TECHNICAL MEMORANDUM

September 2019 Quarterly Performance Monitoring OMC Plant 2 Site (OU4), Waukegan, Illinois WA No. 237-RARA-0528/Contract No. EP-S5-06-01

PREPARED FOR: Sarah Rolfes/U.S. Environmental Protection Agency (EPA)

PREPARED BY: CH2M HILL, Inc. (CH2M)

DATE: February 3, 2020

PROJECT NUMBER: 696001.CV.01

REVISION NO.:

Introduction

This memorandum documents the field activities and results associated with the baseline performance groundwater sampling conducted in September 2019 at the Outboard Marine Corporation (OMC) Plant 2 Site (Operable Unit [OU] 4) in Waukegan, Illinois. The injections were conducted in April and May 2018 and included the two trichloroethene (TCE) hotspot and three lower-concentration source areas shown in Figure 1. The work is pursuant to Technical Direction Memorandum No. 1 received from EPA (dated July 17, 2017) authorizing a second injection event and pre- and post-injection monitoring to evaluate the performance of the treatment. As specified in EPA's Record of Decision (EPA 2009), the overall remedial action objective for the groundwater remedy is to reduce the concentrations of the chemicals of concern (TCE, cis-1,2-dichloroethene [cis-1,2-DCE], and vinyl chloride) to levels that would allow the groundwater to be used for residential purposes without restrictions.

The monitoring wells in the performance and sitewide well networks and analysis to be performed as part of the monitoring program were documented in the *Quality Assurance Project Plan Addendum III Letter* approved by EPA on April 5, 2019 (CH2M 2019).

Field Activities

The baseline performance groundwater sampling event was conducted from September 16 to 18, 2019, and included the following:

- Collected depth to water from sitewide and performance monitoring wells (63 locations) and water quality measurements and groundwater samples from 34 performance monitoring wells. Table 1 and Figure 1 show the performance monitoring well locations.
- Managed groundwater purge water in 5-gallon buckets, and temporarily stored water in tanks and then treated it by the onsite water treatment system.
- Performance monitoring well locations (34 locations) were sampled for analysis of chlorinated volatile organic compounds (VOCs), total organic carbon (TOC), and chloride (Figures 2a and 2b).

Groundwater Sampling

Groundwater samples were collected using low-flow methods as described in the quality assurance project plan (CH2M 2013). The monitoring wells were purged until the field parameters (temperature, specific conductance, dissolved oxygen, pH, oxidation reduction potential, and turbidity) were stable based on readings from a YSI multi-parameter flow-through cell. The low-flow parameters were

FES0202202151MKE 1

recorded for each well (Attachment 1). Figures 3a and 3b show the water level elevations for the shallow and deep portions of the aquifer.

Samples requiring VOC analysis were submitted to a laboratory within EPA's Analytical Services Branch, while TOC and chloride samples were sent to Katahdin Analytical Services of Scarborough, Maine.

Waste Management

Purge water from the sampling was containerized and treated by the water treatment system related to the onsite consolidation facility.

Personal protective equipment was doubled-bagged and placed with the general waste from the site for disposal.

Data Management and Evaluation

The field sample data were entered into EPA's Scribe software. The data were used to create chain-of-custody forms and for tracking purposes.

Following sample analysis, the Contract Laboratory Program laboratory transmitted the analytical data and supporting documentation to EPA for validation, after which, an electronic analytical report and electronic and hard copy validation reports were sent to CH2M. Following EPA's data validation, the CH2M project chemist reviewed the validation summaries and entered the qualifiers into the project database. Attachment 2 contains the data usability evaluation technical memorandum.

Analytical Results

Table 2 shows stabilized field parameter results for samples collected in September 2019. Table 3 contains analytical laboratory results for VOC, TOC, and chloride parameters.

Figures 2a and 2b show the contaminant distribution based upon the total detected concentrations of TCE, cis-1,2-DCE, and vinyl chloride in the shallow and deep portions of the aquifer.

Conclusions and Recommendations

The analytical results for TCE, cis-1,2-DCE, and vinyl chloride are relatively similar to the previously collected data from March and May 2019. The groundwater quality and analytical results from the previous monitoring (April 2014 through December 2016), March 2018 pre-injection, August 2018 post-injection sampling event can be compared to evaluate the effectiveness of the supplemental treatment. CH2M recommends continuing quarterly groundwater performance monitoring with the purpose of evaluating the overall performance of the enhanced in situ biodegradation and in situ chemical reduction treatment in reducing chlorinated VOC concentrations in the groundwater.

References

CH2M HILL, Inc. (CH2M). 2013. *Quality Assurance Project Plan, Revision 2, OMC Plant 2 Site, Waukegan, Illinois. WA No. 105-RARA-0528, Contract No. EP-S5-06-01.* March.

CH2M HILL, Inc. (CH2M). 2019. *Quality Assurance Project Plan Addendum III Letter, OMC Plant 2 Site, Waukegan, Illinois. WA No. 237-RARA-0528, Contract No. EP-S5-06-01*. April.

U.S. Environmental Protection Agency (EPA). 2009. *Record of Decision, Outboard Marine Corporation Superfund Site, Waukegan. Lake County, Illinois*. February.

2 FES0202202151MKE

Tables

Table 1. Summary of Well IDs and Analytes for Quarterly Groundwater Sampling

September 2019 Quarterly Performance Monitoring

OMC Plant 2 Site (OU4) - Waukegan, IL

Well Number	FD	MS/MSD	VOCs	TOC	Chloride	Date Collected
MW-600D			Х	Χ	X	9/18/2019
MW-600S			Х	Х	Х	9/18/2019
MW-601D			Х	Х	Х	9/16/2019
MW-601S			Х	Χ	X	9/16/2019
MW-602D	Х		Х	Х	Х	9/16/2019
MW-602S			Х	Х	Х	9/16/2019
MW-603D			Х	Х	Х	9/17/2019
MW-603S		Х	Х	Х	Х	9/17/2019
MW-604D			Х	Х	Х	9/17/2019
MW-604S			Х	Х	Х	9/17/2019
MW-605D	Х		Х	Х	Х	9/17/2019
MW-605S		Х	Х	Х	Х	9/17/2019
MW-606D			Х	Х	Х	9/17/2019
MW-606S			Х	Х	Х	9/17/2019
MW-607D			Х	Х	Х	9/17/2019
MW-607S			Х	Х	Х	9/17/2019
MW-612D			Х	Х	Х	9/18/2019
MW-612S	Х		Х	Х	Х	9/18/2019
MW-613D			Х	Х	Х	9/18/2019
MW-613S			Х	Х	Х	9/18/2019
MW-614D			Х	Х	Х	9/17/2019
MW-614S			Х	Х	Х	9/17/2019
MW-615D			Х	Х	Х	9/17/2019
MW-615S			Х	Х	Х	9/17/2019
MW-619D			Х	Х	Х	9/17/2019
MW-619S			Х	Х	Х	9/17/2019
MW-620D			Х	Х	Х	9/16/2019
MW-620S			Х	Х	Х	9/16/2019
MW-621D			Х	Х	Х	9/18/2019
MW-621S	Х		Х	Х	Х	9/18/2019
MW-625D			Х	Х	Х	9/18/2019
MW-625S			Х	Х	Х	9/18/2019
MW-626D			Х	Х	Х	9/16/2019
MW-626S			Х	Х	Х	9/16/2019

Notes

Field duplicates collected for every 10 samples and MS/MSD for every 20 samples.

One field blank and one equipment blank collected.

FD = field duplicate, ID = identification, MS/MSD = matrix spike/matrix spike duplicate,

TOC = total organic carbon, VOC = volatile organic compounds

Table 2. Field Parameters

September 2019 Quarterly Performance Monitoring

OMC Plant 2 Site (OU4) - Waukegan, IL

		MW-600S	MW-600D	MW-601S	MW-601D	MW-602S	MW-602D	MW-603S	MW-603D	MW-604S	MW-604D	MW-605S	MW-605D	MW-606S	MW-606D	MW-607S	MW-607D	MW-612S	MW-612D
		09/18/2019	09/18/2019	09/16/2019	09/16/2019	09/16/2019	09/16/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/18/2019	09/18/2019
Depth to Water	ft btoc	3.11	3.22	2.93	2.85	2.45	2.65	2.77	2.38	2.26	2.48	4.06	4.45	3.72	5.01	3.22	2.89	3.28	2.97
Dissolved Oxygen	mg/L	0.08	0.22	0.3	0.13	0.16	0.21	0.31	0.17	0.15	0.13	0.2	0.17	0.19	0.14	0.22	0.2	0.19	1.51
Electrical Conductivity	mS/cm	0.873	3.202	0.923	5.252	1.418	3.234	1	6.845	2.547	8.136	1.47	7.39	1.594	9.255	1.374	5.418	2.531	4.5
Flow Rate	mL/min	250	300	300	340	340	300	300	320	340	300	350	220	275	240	320	200	340	275
Oxidation Reduction Potential	mV	-110.5	-168.7	-118.1	-24.8	-85.3	-203.9	-111.5	10	-102.2	-176	-121	-91.8	-97.8	-99.6	-158.5	-142.4	-94.9	-26
рН	pH units	6.86	6.91	6.9	6.25	7.16	7.39	6.8	5.96	6.91	6.23	6.9	6.06	7.83	6.32	7.31	7.54	6.93	5.88
Temperature	°C	19.31	15.88	19.4	15.41	19.13	15.49	18.95	14.94	18.89	17.05	20.58	16.53	19.55	17.12	20.52	15.28	19.77	17.79
Turbidity	NTU	1.95	0	0	7.6	1.8	0	0	0	6.7	6.9	0	0	0	11.5	0	0	0	4.92

Notes:

°C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

mL/min = millimeters per minute

mS/cm = milliSiemens per centimeter

mV = millivolts

NTU = nephelometric turbidity units

Table 2. Field Parameters

September 2019 Quarterly Performance Monitorin

OMC Plant 2 Site (OU4) - Waukegan, IL

		MW-613S	MW-613D	MW-614S	MW-614D	MW-615S	MW-615D	MW-619S	MW-619D	MW-620S	MW-620D	MW-621S	MW-621D	MW-625S	MW-625D	MW-626S	MW-626D
		09/18/2019	09/18/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/16/2019	09/16/2019	09/18/2019	09/18/2019	09/18/2019	09/18/2019	09/16/2019	09/16/2019
Depth to Water	ft btoc	3.88	4.05	2.88	2.83	4.35	3.9	3.78	4.23	4.16	5.2	4.4	4.5	2.62	3.18	5.25	5.37
Dissolved Oxygen	mg/L	0.02	0.14	0.11	0.11	0.12	0.1	0.21	0.13	0.15	0.13	0.18	0.2	0.13	0.13	0.18	0.2
Electrical Conductivity	mS/cm	2.139	4.08	0.996	11.91	0.655	8.229	1.446	5.016	2.309	5.931	2.034	5.537	0.587	5.317	2.367	4.688
Flow Rate	mL/min	225	260	250	200	340	340	250	240	150	240	250	240	250	300	200	210
Oxidation Reduction Potential	mV	-112.9	-305.6	65.8	-174.2	-39.8	-464.5	-86.1	-223.8	-230	-363.3	-120.5	-74.8	101.1	-179.5	-115.2	-132.2
рН	pH units	7.46	7.14	6.83	7.9	7.06	9.81	7.56	8.22	6.94	7.41	7.13	6.46	7.05	8.74	7.2	7.39
Temperature	°C	7.46	14.32	19.46	16.61	20.24	16.62	19.25	14.98	21.14	17.31	19.04	16.13	18.88	15.98	17.39	14.84
Turbidity	NTU	1.03	0	1.9	5.5	1.4	0	0	0	0	8	3.96	5.7	0.5	0	0	0.1

Notes:

°C = degrees Celsius

ft btoc = feet below top of casing

mg/L = milligrams per liter

mL/min = millimeters per minute

mS/cm = milliSiemens per centimeter

mV = millivolts

NTU = nephelometric turbidity units

Table 3. Analytical Results

September 2019 Quarterly Performance Monitoring

OMC Plant 2 Site (OU4) - Waukegan, IL

Olvie Flam 2 Site (004) - Waakegar	.,		MW-600S	MW-600D	MW-601S	MW-601D	MW-602S	MW-602D	MW-603S	MW-603D	MW-604S	MW-604D	MW-605S	MW-605D	MW-606S	MW-606D	MW-607S	MW-607D	MW-612S	MW-612D	MW-613S	MW-613D	MW-614S	MW-614D	MW-615S
Parameter	MCLa	Unit	09/18/2019	09/18/2019	09/16/2019	09/16/2019	09/16/2019	09/16/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/17/2019	09/18/2019	09/18/2019	09/18/2019	09/18/2019	09/17/2019	09/17/2019	09/17/2019
Volatile Organic Compounds																									
1,1,1-Trichloroethane	200	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,1,2-Trichloroethane	5	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,1-Dichloroethane	-	μg/L	5 U	5 U	0.27 J	0.75 J	0.78 J	130 U	0.48 J	25 U	0.72 J	130 U	0.99 J	130 U	0.6 J	0.43 J	5 U	1000 U	0.36 J	5 U	5 U	500 U	5 U	5 U	0.26 J
1,1-Dichloroethene	7	μg/L	5 U	5 U	5 U	5 U	5 U	33 J	5 U	11 J	5 U	30 J	2.8 J	130 U	5 U	5 U	5 U	570 J	5 U	0.92 J	5 U	500 U	5 U	5.1	5 U
1,2,3-Trichlorobenzene	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	70	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.2	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,2-Dibromoethane	0.05	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,2-Dichlorobenzene	600	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,2-Dichloroethane	5	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	0.92 J	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,2-Dichloropropane	5	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,3-Dichlorobenzene	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
1,4-Dichlorobenzene	75	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
2-Butanone	-	μg/L	10 U	250 U	10 U	50 U	10 U	250 U	10 U	250 U	10 U	190	10 U	2000 U	10 U	62	10 U	1000 U	10 U	10 U	10 U				
2-Hexanone	-	μg/L	10 U	250 U	10 U	50 U	10 U	250 U	10 U	250 U	10 U	3.5 J	10 U	2000 U	10 U	10 U	10 U	1000 U	10 U	10 U	10 U				
4-Methyl-2-Pentanone	-	μg/L	10 U	250 U	10 U	50 U	10 U	250 U	10 U	250 U	10 U	4 J	10 U	2000 U	10 U	1.6 J	10 U	1000 U	10 U	10 U	10 U				
Acetone	-	μg/L	10 U	250 U	10 U	50 U	10 U	250 U	10 U	250 U	10 U	81	10 U	2000 U	10 U	74	10 U	1000 U	10 U	10 U	10 U				
Benzene	5	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Bromochloromethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Bromodichloromethane ⁶	80	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Bromoform ^o	80	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Bromomethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Carbon Disulfide	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	0.3 J	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Carbon tetrachloride	5	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Chlorobenzene	100	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	0.19 J	5 U	5 U	500 U	5 U	5 U	5 U
Chlorodibromomethane ^o	80	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Chloroethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	0.2 J	25 U	0.31 J	130 U	4.1 J	130 U	0.98 J	0.34 J	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Chloroform	80	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Chloromethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	70	μg/L	0.28 J	0.57 J	1.2 J	0.67 J	1.5 J	12000	0.9 J	3900	100	11000	260	14000	68	19	0.23 J	140000	0.35 J	62	0.6 J	20000	5 U	380	3.1 J
cis-1,3-Dichloropropene	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Cyclohexane	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Dichlorodifluoromethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Ethylbenzene	700	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Freon 113	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Isopropylbenzene	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Methyl Acetate	-	μg/L	5 U	3.4 J	5 U	3.2 J	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	1.9 J	5 U	1000 U	5 U	7.5	5 U	500 U	5 U	5 U	5 U
Methyl tert-butyl ether (MTBE)		μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Methylcyclohexane		μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Methylene Chloride	5	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	0.51 J	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Styrene	100	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Tetrachloroethene	5	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Toluene	1,000	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	100	μg/L	5 U	5 U	5 U	5 U	5 U	53 J	5 U	3.9 J	0.21 J	9.4 J	1.4 J	15 J	1.1 J	2.9 J	5 U	540 J	5 U	1.6 J	5 U	27 J	5 U	2.5 J	0.27 J
trans-1,3-Dichloropropene	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Trichloroethylene	5	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	22	130 U	5 U	5 U	5 U	36000	5 U	0.43 J	0.43 J	30000	5 U	8.7	0.54 J
Trichlorofluoromethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Vinyl Chloride	2	μg/L	0.89 J	6.6	1.2 J	2 J	0.71 J	4300	2 J	4700	150	17000	120	6600	77	47	5 U	8700	5 U	84	5 U	5400	0.24 J	680	1.1 J
Xylene, o ^c	10,000	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Xylenes, m & p ^c	10,000	μg/L	5 U	5 U	5 U	5 U	5 U	130 U	5 U	25 U	5 U	130 U	5 U	130 U	5 U	5 U	5 U	1000 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
Wet Chemistry			·	·		·	·						·												
Chloride (Cl)		mg/L	13	280 J-	2.1	260	15	310	3.1	300	78	180	24 J-	330	40	190	13	300	99	780	13	290 J	19	280	5.2
Total Organic Carbon	-	mg/L	3.6	240	4.1	650	5.5	71	4.7	630	6.8	660	6	400	2.9	1100	2.3	30	6.2	1100	9.6	160	6.3	130	4.1
Notes:	· · · · · · · · · · · · · · · · · · ·								·	·	·				·								·		

Notes:

Shaded cells indicate detection over the MCL

- = no criteria

 $\mu g/L$ = micrograms per liter

 \boldsymbol{J} indicates the result is an estimated quantity.

U indicates he analytes was not detected above the reported quantitation limit (QL).

 $\ensuremath{\mathsf{UJ}}$ indicates the analyte was not detected above the QL and the QL is approximate

^a Maximum Contaminant Level (MCL), EPA National Primary Drinking

Water Regulations, EPA 816-F-09-004, May 2009

^b MCL is for Total Trihalomethanes, includes the individual trihalomethanes (bromodichloromethane, chlorodibromomethane, chloroform, tribromomethane).

^c MCL is for Total Xylenes, includes m,p-Xylene and o-Xylene; the MCL for total Xylenes was considered an evaluation surrogate.

Table 3. Analytical Results

September 2019 Quarterly Performance Monitoring

OMC Plant 2 Site (OU4) - Waukegan, IL

Parameter	MCLa	Unit	MW-615D 09/17/2019	MW-619S 09/17/2019	MW-619D 09/17/2019	MW-620S 09/16/2019	MW-620D 09/16/2019	MW-621S 09/18/2019	MW-621D 09/18/2019	MW-625S 09/18/2019	MW-625D 09/18/2019	MW-626S 09/16/2019	MW-626D 09/16/2019
Volatile Organic Compounds													
1,1,1-Trichloroethane	200	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,1,2,2-Tetrachloroethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,1,2-Trichloroethane	5	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,1-Dichloroethane	-	μg/L	5 U	5 U	5 U	0.17 J	5 U	5 U	0.39 J	0.2 J	10 U	0.19 J	5 U
1,1-Dichloroethene	7	μg/L	2.6 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	7.1	5 U
1,2,3-Trichlorobenzene	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,2,4-Trichlorobenzene	70	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.2	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,2-Dibromoethane	0.05	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,2-Dichlorobenzene	600	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,2-Dichloroethane	5	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,2-Dichloropropane	5	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,3-Dichlorobenzene		μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
1,4-Dichlorobenzene	75	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
2-Butanone	-	μg/L											
2-Hexanone		μg/L μg/L	27 U	10 U	20 U	10 U	10 U						
4-Methyl-2-Pentanone		μg/L μg/L	10 U	20 U	10 U	10 U							
Acetone		μg/L μg/L	3.4 J	10 U	20 U	10 U	10 U						
Benzene	-		47	10 U	10 U	10 U	17 U	10 U	10 U	10 U	20 U	10 U	10 U
	5	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Bromochloromethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Bromodichloromethane ^u	80	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Bromoform ^o	80	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Bromomethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Carbon Disulfide		μg/L	0.38 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Carbon tetrachloride	5	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Chlorobenzene	100	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Chlorodibromomethane ^b	80	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Chloroethane	-	μg/L	0.33 J	5 U	0.57 J	1.3 J	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Chloroform	80	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Chloromethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
cis-1,2-Dichloroethene	70	μg/L	150	0.69 J	2.5 J	14	0.93 J	0.29 J	5.9	2 J	0.53 J	590	0.66 J
cis-1,3-Dichloropropene	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Cyclohexane	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Dichlorodifluoromethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Ethylbenzene	700	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Freon 113	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Isopropylbenzene	=	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Methyl Acetate	=	μg/L	13	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Methyl tert-butyl ether (MTBE)	=	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Methylcyclohexane	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Methylene Chloride	5	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Styrene	100	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Tetrachloroethene	5	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Toluene	1,000	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
trans-1,2-Dichloroethene	100	μg/L	14	5 U	5 U	0.15 J	0.25 J	5 U	0.56 J	5 U	10 U	3.3 J	5 U
trans-1,3-Dichloropropene	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5.5 T	5 U
Trichloroethylene	5	μg/L	17	0.25 J	5 U	1.9 J	5 U	0.45 J	0.15 J	0.29 J	10 U	220	5 U
Trichlorofluoromethane	-	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Vinyl Chloride	2	μg/L	170	5 U	18	19	3.7 J	5 U	27	10	1200	180	4.1 J
Xylene, o ^c	10,000	μg/L	5 U	5 U	5 U	5 U	5.7 J	5 U	5 U	5 U	10 U	5 U	5 U
Xylenes, m & p ^c	10,000	μg/L μg/L	5 U										
Wet Chemistry	10,000	μg/ L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U
Chloride (CI)		ma/I			100			470			100	- 10	
Total Organic Carbon	-	mg/L	340	29	180	20	96	170	480	24	180	13	130
	_	mg/L	320	1.8	47	16	460	5.1	440	1.9	69	5.6	18

Water Regulations, EPA 816-F-09-004, May 2009

^b MCL is for Total Trihalomethanes, includes the individual trihalomethanes (bromodichloromethane, chlorodibromomethane,

chloroform, tribromomethane).

^c MCL is for Total Xylenes, includes m,p-Xylene and o-Xylene; the MCL for

total Xylenes was considered an evaluation surrogate. Shaded cells indicate detection over the MCL

- = no criteria

 $\mu g/L$ = micrograms per liter

J indicates the result is an estimated quantity.

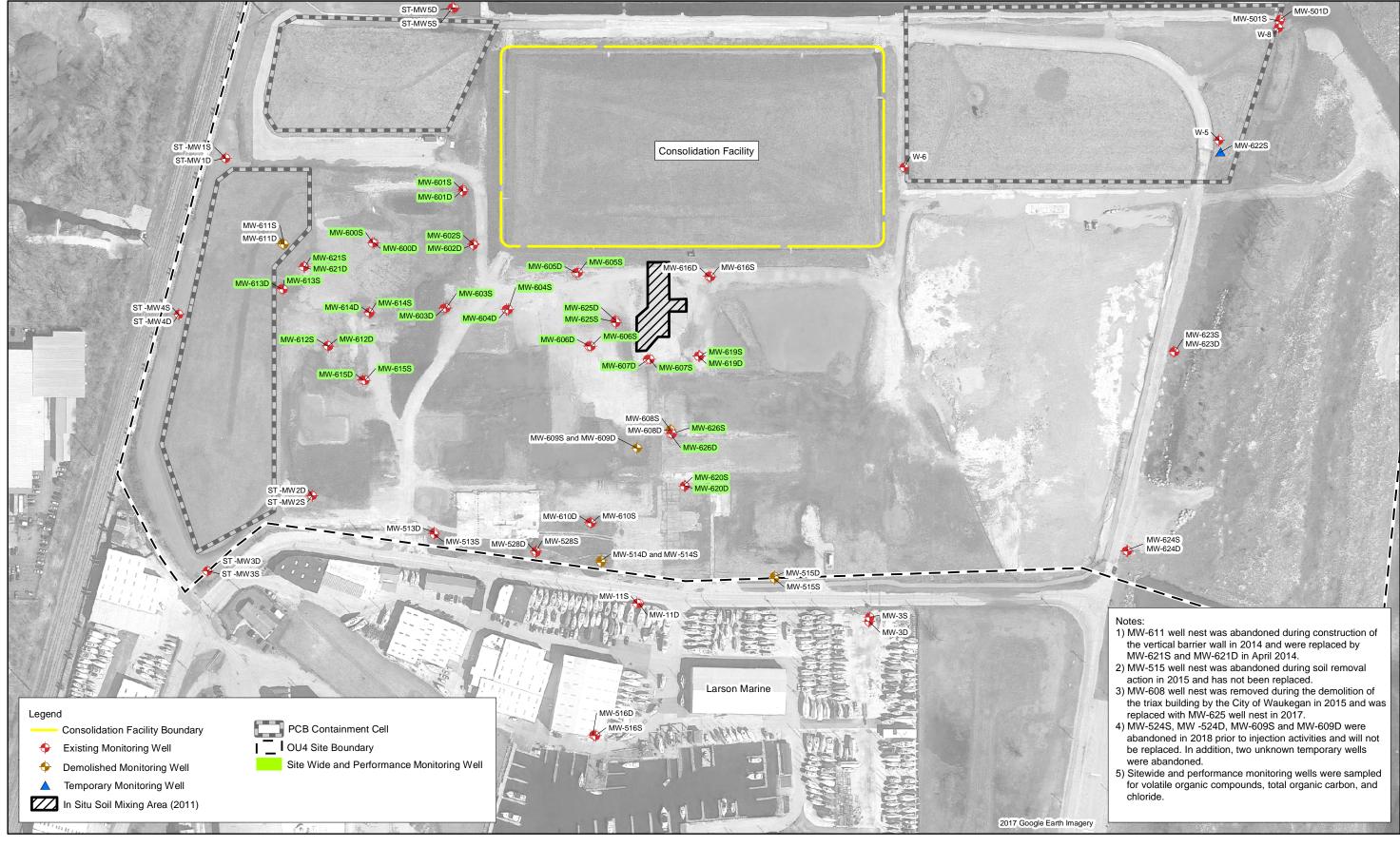
U indicates he analytes was not detected above the reported quantitation limit (QL).

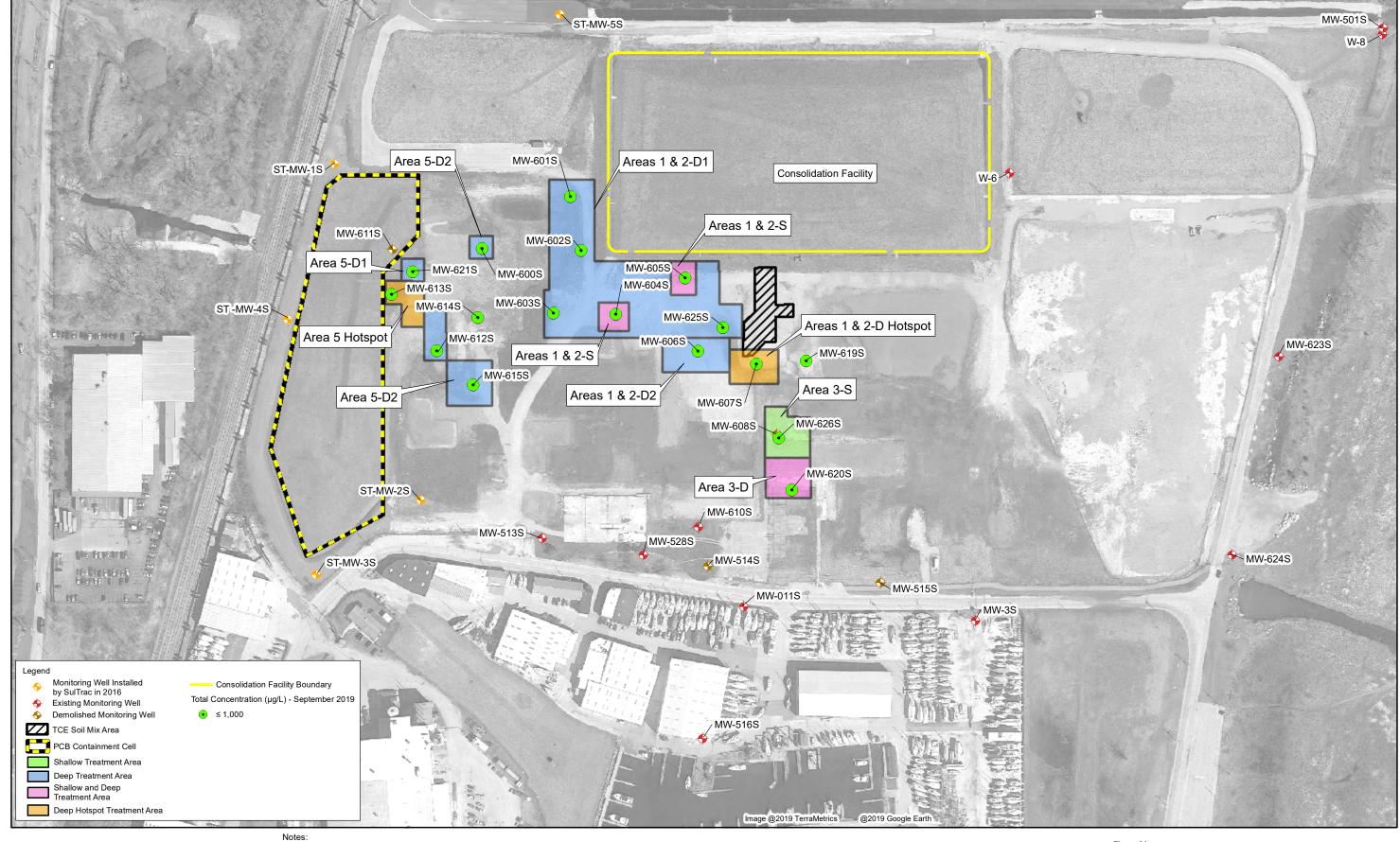
UJ indicates the analyte was not detected above the QL and the QL is approximate

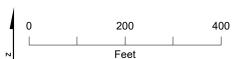
Page 2 of 2

^a Maximum Contaminant Level (MCL), EPA National Primary Drinking

Figures



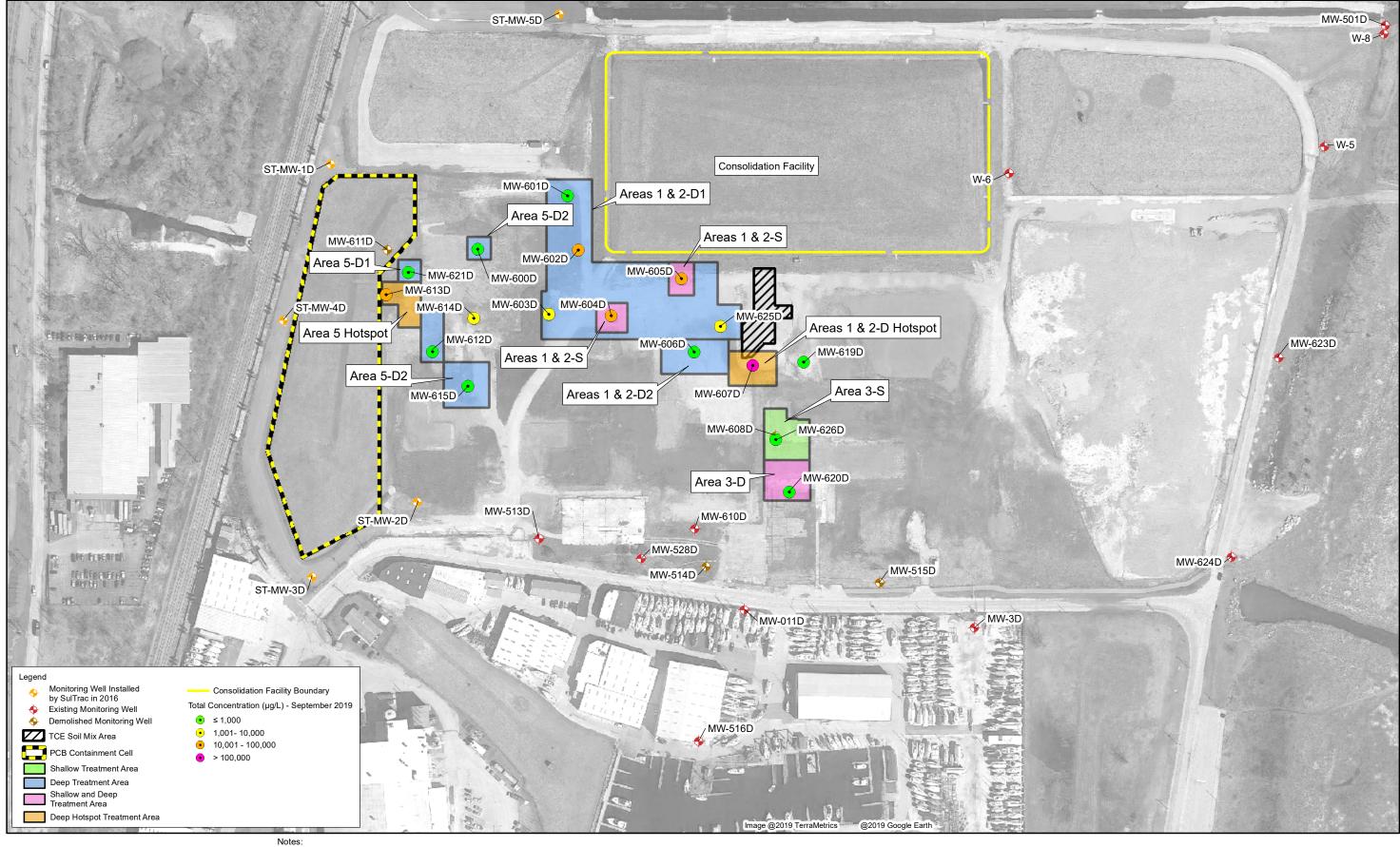

Figure 1


200 400

Monitoring Well and Groundwater Sampling Locations

OMC Plant 2

Waukegan, IL

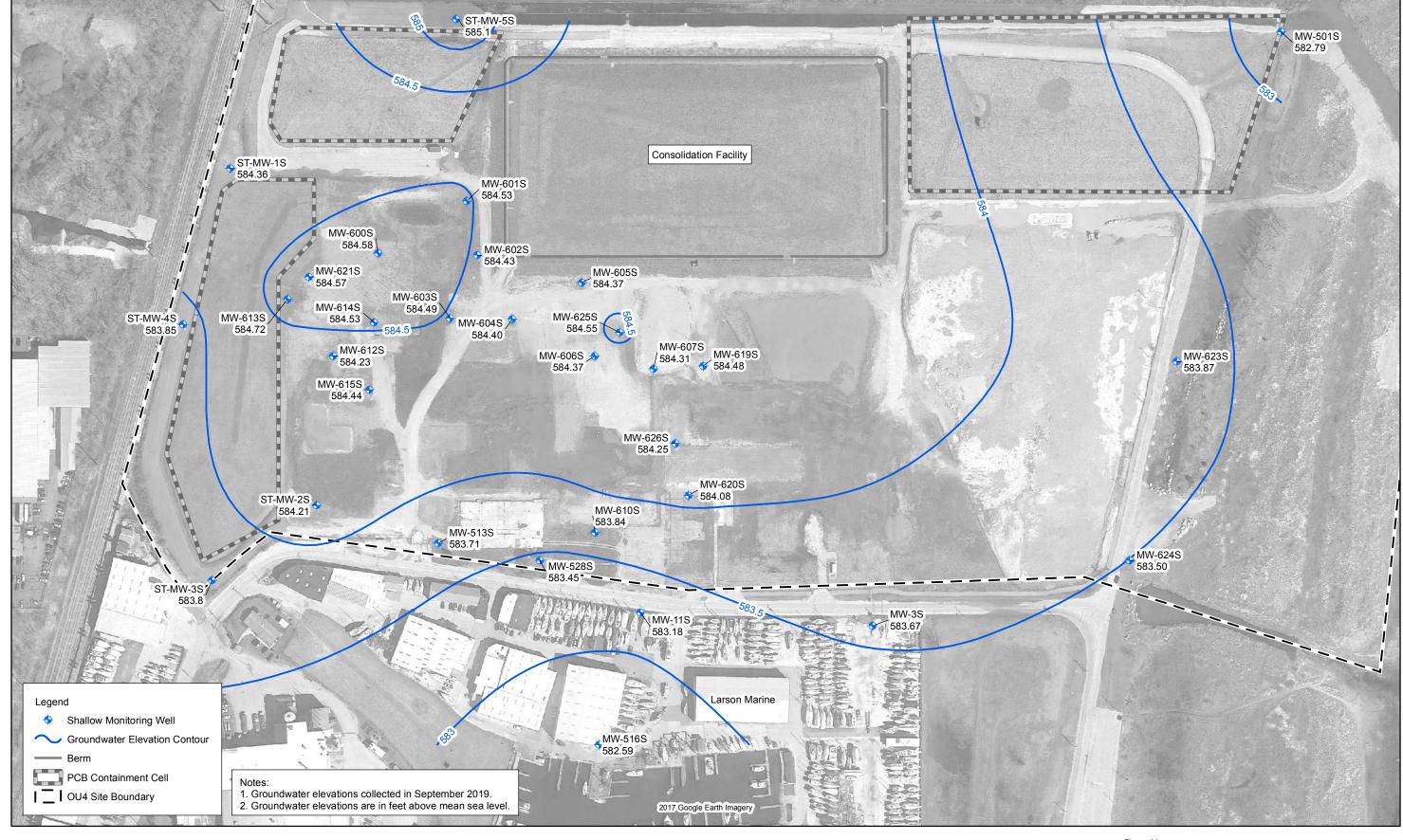


- Notes:

 1. MW-611S and MW-611D were abandoned during the construction of the vertical barrier wall and replaced by MW-621S and MW-621D.

 2. MW-608S was destroyed during the demolition of the triax building in 2015.
- cis-1,2-dichloroethene, and vinyl chloride.

Figure 2A September 2019 Sampling Results - Shallow Wells OMC Plant 2 Waukegan, IL



0 200 400

Feet

- MW-611S and MW-611D were abandoned during the construction of the vertical barrier wall and replaced by MW-621S and MW-621D.
- 2. MW-608S and MW-608D were destroyed during the demolition of the triax building in 2015.
- Total concentration is the sum of the detected concentrations for trichloroethene, cis-1,2-dichloroethene, and vinyl chloride.

Figure 2B
September 2019 Sampling Results - Deep Wells
OMC Plant 2
Waukegan, IL

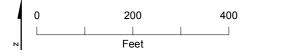
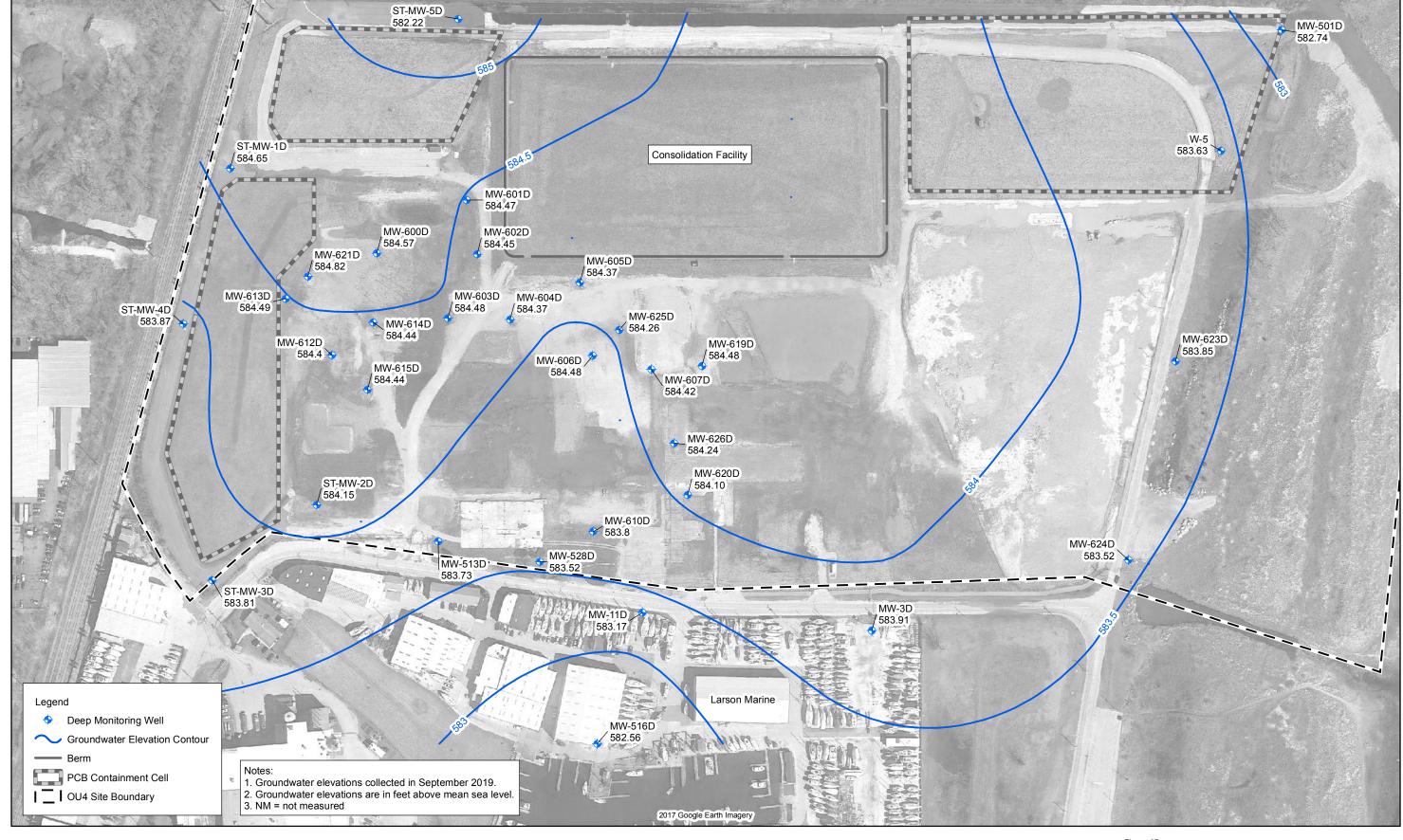



Figure 3A
September 2019 Shallow Potentiometric Surface Map
OMC Plant 2
Waukegan, IL

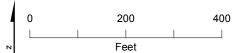


Figure 3B
September 2019 Deep Potentiometric Surface Map
OMC Plant 2
Waukegan, IL

Attachment 1 Groundwater Sampling Forms

Monitoring Well Field Data Sheet - OMC Groundwater Site Well Number: Field Crew: MG DG Purpose of Sampling: **OMC Quarterly Sampling** Site: Field Conditions: No. existent Well Pad Explain: Acceptable Not Acceptable **Protective Casing** Explain: Acceptable Not Acceptable Well Casing Explain: Not Acceptable Acceptable Explain: Non-cristent Locking Cap Not Acceptable Acceptable Not Acceptable Explain: Well Label (outside) Acceptable Well Label (inside) Acceptable Not Acceptable Explain: Acceptable Not Acceptable Explain: **PURGE METHOD** 0944 Low Flac Date: 091819 Time: Method: 2515 Total Well Depth (ft) 3.22 Depth to Water (ft): 21.43 Water Column (ft): 1 volume Comments: **OBSERVATIONS** Low H₂S , Fuel Like , Other: Odor: Comments: FIELD PARAMETERS Specific Temp Turbidity Volume Rate DO Depth to water ρН (s.u.) Time Conductance (mL/min) (mg/L) (NTU) (mV) (°C) (gal) (mS/cmc) +/- 10% +/- 3% <10 NTU +/- 10 mV +/- 0.1 s,u, +/- 3% 3.161 3.62 300 7.75 16.50 0.00 1.24 -135.6 1.8 0947 15.76 0.5 3W 3:53 0.30 -157.8 3.223 7.09 0,00 0952 3.54 15.76 0.00 1-0 0-23 6957 300 6.97 -156. 3.203 6.93 1.4 3-198 0.0 300 0.22 -160.1 15.84 3.54 1602 3-202 0.22 2.1 30 3.55 6.91 -168.7 15.88 00 1009 SAMPLING 691919 1010 6MC-MW-6000 6000 Method of Sample Collection: NOC, TOC, Chlocide Analytical Parameters: Duplicate Sample ID: NR MS/MSD Q.C. Sample Type: **Duplicate** Q.C. Parameters: Well locked? Trash picked up? SIGNED/SAMPLER:

Monitoring Well Field Data Sheet - OMC Groundwater Site Well Number: MW -6005 Field Crew: JG, MG Purpose of Sampling: OMC Quarterly Sampling Field Conditions: 70 F SUNII Site: WELL CONDITION Well Pad Acceptable Not Acceptable Explain: Acceptable Protective Casing Not Acceptable Explain: Well Casing Acceptable Not Acceptable Explain: Acceptable Explain: **Locking Cap** Not Acceptable Well Label (outside) Acceptable Not Acceptable Explain: Well Label (inside) Acceptable Not Acceptable Explain: J-Plug Not Acceptable Explain: Acceptable **PURGE METHOD** Date: 0//4//9 Method: Low How Time:0940 Total Well Depth (ft) = 1056 Depth to Water (ft): Water Column (ft): 1 volume Comments: **OBSERVATIONS** (None) Low , Odor: High , H₂S , Fuel Like , Other: Comments: FIELD PARAMETERS Specific Volume DO ORP Temp Turbidity Depth to water Time рΗ (s.u.) Conductance (mL/min) (mg/L) (mV) (°C) (m\$/cmc) +/- 0.1 s,u, /- 10% +/- 10 mV +/- 3% <10 NTU +/- 3% STAR PURCHE 0945 -92.9 19.55 6.94 0.34 0.890 250 160 0950 0.3 3.13 6,88 -101.8 19.10 0955 06 010 0.878 20.6 5.13 250 -89.5 0.869 1.0 6.83 19.27 5.37 3.13 252 1000 0.08 0.875 -101.7 19.20 1005 1.3 250 3.35 4.85 0.08 3.12 C 87 -111.1 3.12 1.6 0.08 0.874 1010 250 19.47 1.77 0.877 -110.5 2.0 6.86 1.95 3.12 19.31 1015 250 0.08 1020 LPI E SAMPLING Date: 9/18/14 Time: /020 Method of Sample Collection: 6m5 Sample ID: VOCS, TOF, CI Analytical Parameters: DMC-MW-GOBSE Q.C. Sample Type: 以 / 小 MS/MSD Duplicate Sample ID: N Duplicate Q.C. Parameters: NIA Trash picked up? Well locked? SIGNED/SAMPLER:

Monitoring Well Field Data Sheet - OMC Groundwater Site Well Number: 601D Field Crew: R-K-IK-M Purpose of Sampling **OMC Quarterly Sampling** Field Conditions: Sunny OMC Site: WELL CONDITION Explain N/A No well pad Well Pad Not Acceptable Acceptable Protective Casing Acceptable Not Acceptable Acceptable Well Casing Explain: Not Acceptable (Acceptable) Locking Cap Not Acceptable Explain: Well Label (outside) Acceptable Not Acceptable Explain: Well Label (inside) Acceptable Not Acceptable Explain: (Acceptable) Not Acceptable Explain: **PURGE METHOD** Method: Cow flow Date: 09/16/18 Time: /440 Total Well Depth (ft) = 24.96 Depth to Water (ft): = 2.85 Water Column (ft): 29-11 1 volume Comments:

OBSERVATIONS

Odor:

(None

Low ...

High ,

H₂S , Fuel Like , Other:

Comments:

Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
		**	+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	
1345		340	6.25	1.28	130.8	5.124	16.08	6.0	3.02
1350		340	6.21	0.44	68.3	4.984	16.00	8.3	2.98
1355		340	6.20	0.28	48.0	5.590	15.89	10.8	3001
1400		340	6:18	0.20	3102	5.382	15.72	15.0	3.01
1405		340	6-22	0.17	7.5	5.262	15.71	12.0	3.01
1410		340	6-23	0.17	-3.7	5.289	15.48	5.2	3.01
1415		340	6.23	0.16	-9.5	5.295	15461	6.0	3.01
1420		340	6-24	0.14	-17.8	5,285	15.49	6.8	3.01
1425	1	340	6.24	0.14	-20.9	5-218	15.52	8.9	3.01
1430	~4	340	6.25	0.13	-24.8	5.252	15.41	7.6	3.01
-	<u> </u>		San	npled	@ 143				
				1					

SAMPLING

Date: 9/16/19

Time: 1435

Sample ID: OMC-MW601D

Method of Sample Collection: (206

Analytical Parameters: VDC, TOCICI

Q.C. Sample Type: N/A MS/MSD

Duplicate

Duplicate Sample ID: U/A

Q.C. Parameters:

Trash picked up?

SIGNED/SAMPLER:

Well locked?

				Monito	ring Well				
	·	-	Field	d Data Sheet -	OMC Groundwate	er Site			
Well Number:	inw-6	2100	Field Crew:	L.Ma		Purpose of Samp	oling:	OMC Qua	arterly Sampling
Site:	ОМС		Field Conditions:		Cloudy				
Well Pad		Acceptable	Not Acceptable	WELL CONDIT	ION '				
Protective Cas	ina	Acceptable	Not Acceptable	Explain:					
Well Casing	m'g	Acceptable	Not Acceptable	Explain:			- 9		
Locking Cap		Acceptable	Not Acceptable	Explain:					
Well Label (ou	tside)	Acceptable	Not Acceptable	Explain:					
Well Label (ins	side)	Acceptable	Not Acceptable	Explain:					
J-Plug		Acceptable	Not Acceptable	Explain:				- 0	
				PURGE METH					
Date: 9/16		Time: 13.3	30	Method:	peristalti	c low fla	~		
Total Well Dep		=10.62							
Depth to Water		= 2.93							
Water Column	(11):	= 7.69		1 volume					
Comments:				1 Admine					
				OBSERVATIO	NS				
Odor:	None	Low , High		Like , Other:					
Comments:									
4514	E 103	5101779							
	· · · · · ·		FII	ELD PARAME	TERS	Specific			
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP . (mV)	Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
			+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	
1340		300	6.76	a.75	-26.2	6.960	2143	4.6	3.01
1345		300	672	2.59	-67.2	0,963	21.09	16	3.0
1350		300	6-72	0.76	-1094	0971	19.65	0	3.08
1355		300	6.72	0.58	-111.0	0.970	1619.63	0	3.08
1400		300	6.72	0.44	- 114.6	0.964	19.59	0	3.08
1405		300	6.75	0.38	-1193	0.960	19.54	Ö	3.08
1410	1	300	683	0 29	-1260	0 935	19.42	0	3.08
1415	V	300	6.84	0.29	-126.6	0.925	1940	0	3.08
1420	N 3.5	300	6-90	0.30	1.811	0,923	19.40	U	3.06
	50.	mple @				<u> </u>			
	20.1	TPW. C							
-									
	<u> </u>	1	<u></u>	CAMPLING	1		<u> </u>		
Date: Q /ic/	110			Time: \U					
	1/19	111 /2016			-	0.00			
		1W-6015	1630	Section of dal	apia Quidollott.	grab			
		tac, cl,		December 2	ala (D. A. /A				
Q.C. Sample Ty		,	Duplicate	Duplicate Sam	ple ID: N/A				
Q.C. Parameter		<u> </u>	Matte de como						
Trash picked up SIGNED/SAMP		Y	Well locked?	1 4					
SIGNEDIONNE	CEII.		Law	Le .					

Field Data Sheet - OMC Groundwater Site Field Crew: K. Ma Well Number: MW -CO2D Purpose of Sampling: OMC Quarterly Sampling Field Conditions 5°F Claud Site **OMC** WELL CONDITION overgrown vegetation surrounding well rest Well Pad Acceptable Explain: Not Acceptable Protective Casing Not Acceptable Explain: Well Casing Not Acceptable Explain: **Locking Cap** Not Acceptable Explain: Acceptable Well Label (outside) Not Acceptable Explain: Well Label (inside) Acceptable Not Acceptable Explain: J-Plug Acceptable Not Acceptable Explain: **PURGE METHOD** Method: low-flow Date: 9/16/19 Time: 1450 Total Well Depth (ft) = 25.95 Depth to Water (ft): Water Column (ft); 23.3 1 volume Comments: **OBSERVATIONS** - black suspended particles Fuel Like | Other: High H₂\$ Low Odor: Comments: - water reacting w/40ml HCl vials 1112134 105101779 FIELD PARAMETERS Specific Turbidity ORP Temp Depth to water Volume Rate DØ ρН Conductance Time (s.u.) (gal) (mL/min) (mg/L) (°C) (mS/cmc) +/- 10% +/= 10 mV +/- 3% <10 NTU /- 0.1 s.u. +/- 3% 300 ၀. ဥ 1500 7.51 0-61 -134 0 2.841 16.94 a.78 -146,0 300 7 33 16.28 0.37 2.826 0 1202 735 300 3823 15.98 0 86.0 -172.4 AF 1510 15-88 a-78 300 7.46 -184.a 0.92 3.018 O 1212 3.138 7.48 300 -186.6 12.71 1230 0.23 O 300 7:44 0-21 -197. d 3.207 1272 12.57 ()7.40 300 0.21 3.226 2.78 530 - 205,5 12.23 N3 300 74, 3 વ - 203. a 3 234 0.21 15.49 78 15 35 0 pled Sam 1240 + 1242 Date: 9/16/19 Time: 1540/1545 (R) Method of Sample Collection: 976 Sample ID: OMC-MW-602D Analytical Parameters: VOC, TOC, () Duplicate Sample ID: WW - 600D - R MS/MSD **Suplicate** Q.C. Sample Type: Q.C. Parameters: \bigvee_{i} 0 Well locked? Trash picked up? SIGNED/SAMPLER:

Monitoring Well Field Data Sheet - OMC Groundwater Site MW-602S Field Crew: OMC Quarterly Sampling Well Number: R-K/KM Purpose of Sampling: Field Conditions: Site: WELL CONDITION Explain: N/A No pad Well Pad Acceptable Not Acceptable **Protective Casing** Acceptable Not Acceptable Explain (Acceptable) Exolain Well Casing Not Acceptable Explain: No Lock Locking Cap Acceptable Not Acceptable (Acceptable) Explain: Well Label (outside) Not Acceptable Well Label (inside) Acceptable Not Acceptable Explain J-Plug Acceptable Explain: Not Acceptable **PURGE METHOD** Low flow Date: 9/16/19 Time: 1453 Method: Total Well Depth (ft) Depth to Water (ft): 2.45 Water Column (ft): 7.78 1 volume Comments:

OBSERVATIONS

Odor: None

Comments:

, Low ,

High 🕌 H₂S , Fuel Like , Other:

FIELD PARAMETERS Specific DO ORP Temp Turbidity Depth to water Volume Rate Time ρН (s.u.) Conductance (mL/min) (mg/L) (mV) (NTU) (feet) (°C) (gal) (m\$/cmc) +/- 10% +/- 3% <10 NTU +/- 10 mV +/- 0.1 s,u, +/- 3% 7:12 0.96 53.8 1.478 20.58 22.4 255 1500 340 1.442 19.96 13. B 2.55 10.3 1505 7.06 6.41 340 -42.0 1.426 19.98 8.2 2.55 7.11 0.28 1510 340 -60.2 2.55 340 7-14 0.22 1.428 19.78 5.1 1515 0-19 -68.7 7-14 1.423 2 55 1520 7.15 77.5 9.34 1525 340 7.16 -82.8 0-16 2.55 1530 340 V4 340 85.3 1.418 1535 7.16 0.16

SAMPLING

9/16/19 Date:

Time: 1540

Sample ID: OMC-MW 6025

Method of Sample Collection:

Analytical Parameters: VOC, TOC, Chloride

Q.C. Sample Type:

MS/MSD

Duplicate

Duplicate Sample ID:

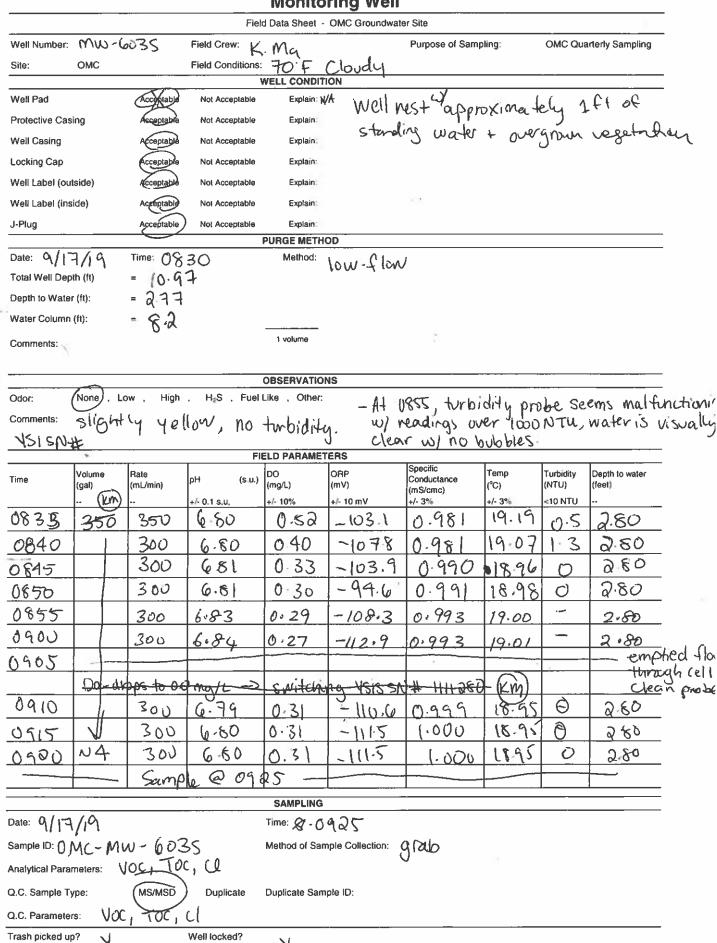
Q.C. Parameters:

Trash picked up?

SIGNED/SAMPLER:

Well locked?

				Monito	ring Well				
	۸۸	1.07.0			OMC Groundwa				
Well Number:	-	1.002D		. Kalia p	pan	Purpose of Sam	pling:	OMC Qua	rterly Sampling
Site:	OMC		Field Conditions:	WELL CONDIT	ION				
Well Pad		Acceptable			N/A No	pad		•	
Protective Cas	ing	Acceptable	Not Acceptable	Explain.		,			
Well Casing		Acceptable	Not Acceptable	Explain:					
Locking Cap		Acceptable	Not Acceptable	Explain:					
Well Label (ou	tside)	Acceptable	Not Acceptable	Explain:		70)			
Well Label (ins	side)	Acceptable	Not Acceptable	Explain:					
J-Plug		Acceptable	Not Acceptable	Explain:					
- 01				PURGE METH					
	7/10	Time:	Eli Lar	Method:	Low flo	2			
Total Well Dep			54 (26:	54)					
Depth to Wate Water Column	, -	= 2.38 = 24.1	(.						
			10/2/10/2/	1 volume					
		un DTW		1 40101110					
P	wigi	rg ~ 3.6	s tt-	OBSERVATIO	NC				
Odor:	None	, Low , High	, H₂S , Fuel	Like , Other:					
Comments:			•						
	_		Fil	ELD PARAME	TERS	lo re			
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
			+/- 0.1 s,u,	+/- 10%	+/- 10 mV	(mS/cmc) +/- 3%	+/- 3%	<10 NTU	
0835		320	5.94	1.07	152.1	5.442	16-22	12.3	6.04
0840		320	5.92	0.36	12212	6.115	15.75	12.8	6.00
0845		320	5.90	0.30	98.0	6.991	15.21	0.3	6.00
0850		320	5.92	0.25	73.2	4.999	15.15	0.0	6.00
0855		320	5.93	0.23	64.8	6.987	15:02	0.5	6.00
0900		320	5.93		52.9	6.924	15-13] -	600
		1	1	0.22		,	1	104	
0905	\vdash	320	5-94	0.22	41.3	6.942	15.00	000	6.00
0910	\vdash	320	5.94	0-21	35.0	6.928	14.86	l	6:00
0915	\vdash	320	5.95	0.17	24.0	6.878	14.85	I	6.0
3920		320	5.95	0.19	19.3	6.876	14.88	0.0	60
1925		320	5.96	0.20	13.1	6.850	14-95	0.0	6.0
0930	\sim	320	5.96	0.17	10.00	6.845	14.94	0.0	6.0
	ya			SAMPLING	Fan	pled a			
Date: 9//-	1/19	7		Time: 09		, ,			
-	,	MW603	D			Grab			
			oc, chlo	ر می ا					
		A MS/MSD	Duplicate		ple ID: NA				
0.0 0	/1 (((1) 1) 1.3 ((1) 1	(*	F	,	lotti				


Q.C. Parameters: NA

Trash picked up?

SIGNED/SAMPLER:

Well locked?

Lower

SIGNED/SAMPLER:

Well Number: MW-6045

Field Crew: R. Kalioppan

Purpose of Sampling:

OMC Quarterly Sampling

Site:

OMC

Field Conditions: 750 F Sunny

WELL CONDITION

Well Pad

Acceptable Acceptable Not Acceptable

Explain: N/A No pad

Protective Casing

Not Acceptable

Explain:

Well Casing Locking Cap Acceptable Acceptable

Not Acceptable Not Acceptable

Explain: Explain

Well Label (outside)

Acceptable

(Mol-Acceptable) Not Acceptable

Explain: No lobel Deep was lobeled . Explain: No lobel (labeled this event)

Well Label (inside)

Acceptable

Acceptable

Explain:

J-Plug

Not Acceptable

PURGE METHOD

Date: 9/17/19 Total Well Depth (ft)

Time: €000

Method: low flow

- 10-66

Depth to Water (ft):

= 2.26

Water Column (ft):

8:40

Comments

1 volume

OBSERVATIONS

Odor:

None , Low , High ,

H₂S , Fuel Like , Other:

Comments:

451# 1111280

			FII	ELD PARAMET	TERS			-	
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to wate (feet)
			+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	
1010		340	6.65	1.32	97.8	2.769	18-77	48	2.3
1015		340	6.80	0.40	72.6	2.645	18.73	3.4	2.3
1020		340	6.84	0.30	26.6	2.580	18.80	4.6	2.3
1025		340	6.87	0-23	-30.1	2.561	18:80	1.7	2-31
1030		340	6.89	0.19	-56.7	2.558	18.91	5.8	231
1035		340	6.89	0-18	-68.1	2.553	18.90	1.5	231
1040		340	6.90	0.17	-89.5	2547	18.82	2.9	2.3/
1045		340	6.90	0-17	- 93.7	2.551	18.83	3.6	231
1050	<u> </u>	340	6.91	0.16	-99.0	2.550	18.91	5-0	2.31
1055	24	340	6.91	0.15	-102.2	2.547	18.89	6.7	2.3
	gul		Sa	moled	@ 110	b			
				/ ′			1		

SAMPLING

9/17/19

Time: 1100

Sample ID: OMC-MW6045

Method of Sample Collection: Grad

Analytical Parameters: VOC, TDC, Chloride

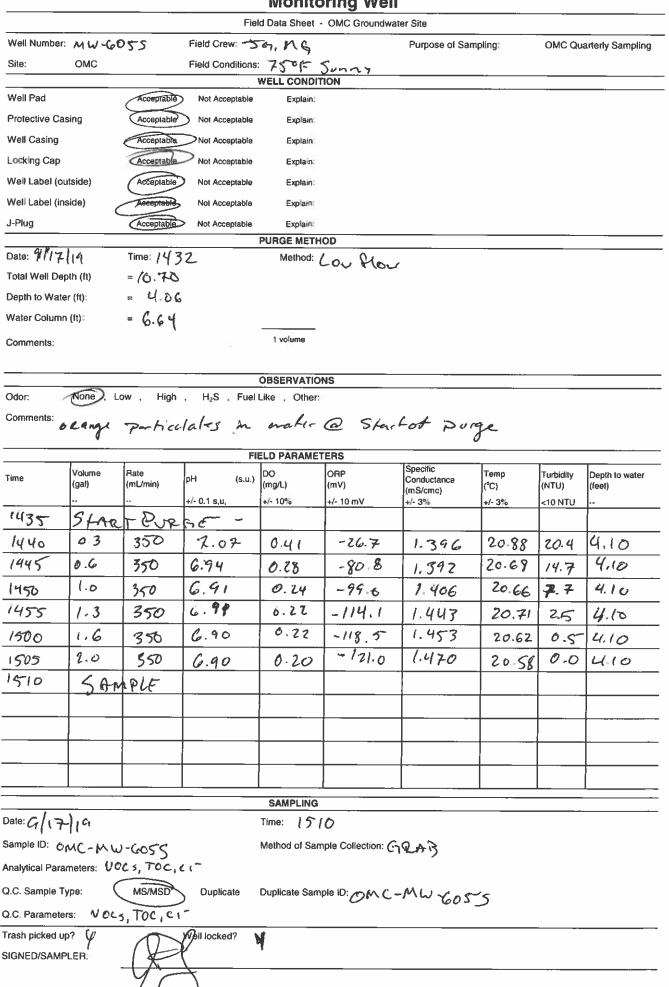
Q.C. Sample Type: N/K MS/MSD

Duplicate Sample ID: N/A Duplicate

Q.C. Parameters: NIA-

Trash picked up?

Well locked?


SIGNED/SAMPLER:

				Monito	ring Well				
			Fiel	d Data Sheet	- OMC Groundwate	r Site			
Well Number:	MW-6	05D	Field Crew:	4156		Purpose of Samp	oling:	OMC Quar	terly Sampling
Site:	OMC		Field Conditions:	Secony,	80 of				
M-11 O- 4				WELL COMDIT	rion		<u></u>		
Well Pad	nina	Acceptable	Not Acceptable Not Acceptable	Explain: Explain:					
Protective Cas	sug	Acceptable		Explain:					
Well Casing		Acceptable	Not Acceptable	•	MA				
ocking Cap	stoido\	Acceptable Acceptable	Not Acceptable	Explain:	Non-exist	tent			
Well Label (ou		Acceptable	Not Acceptable	Explain:	NOV- CHILL				
Vell Label (in Leuc	side)	Acceptable	Not Acceptable	Explain:					
J-Plug		Acceptable		PURGE METH	IOD				
Date: D4	1719	Time:	67	Method:	Law Flow	<u> </u>			
Total Well De	pth (ft)	= 27:2							
Depth to Wate	er (ft):	= 4.45							
Water Column	n (ft):	= 22.7	G						
Comments:				1 volume					
				OBSERVATIO	NS				
Odor:	(None) , l	.ow , High	, H ₂ S , Fuel	Like Other:	:				
Comments:									
		_							
	Tu-1	lo-4-	FI	ELD PARAME	ORP	Specific	Temp	Turbidity	Depth to water
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	(mg/L)	(mV)	Conductance (mS/cmc)	(°C)	(NTU)	(feet)
1 000 00			+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	74
1509	1.7	220	6.09	0.73	-68.6	7.114	17.73	1+1	4.34
1574	2.0	220	6.05	0.22	-80.9	7.903	16-88	0.4	4.36
1519	2.3	220	6.05	0.19	-86.1	7.366	16.49	0.00	4.38
1524	2-5	226	606	6.17	-89.7	7.38	16.41	0.00	4.41
1529	2.0	220	6.06	0.17	-91.8	7.346	14.53	0,00	4.33
10-1									
	 				1		 		
	+	-					 		
					-		 		
	1								
					1				
				<u> </u>					
				SAMPI INC					
Date:	1719			SAMPLING		35			
	1719	lui - laast		Time:	530/153				
	OMG- P	lu - 6051	chbride	Time:	530/153 Imple Collection:	Geab Geab e-Mur- 6			

Well locked?

Q.C. Parameters:

Trash picked up?
SIGNED/SAMPLER:

			Fiel	d Data Sheet -	OMC Groundwate	er Site			
Well Number:	MW-6	606D	Field Crew:	6-156		Purpose of Samp	oling:	OMC Qua	rterly Sampling
Site:	ОМС		Field Conditions:		. 8041=				
Mall Dad				WELL CONDIT	TON				
Well Pad	ni	Acceptable	Not Acceptable	Explain					
Protective Cas Well Casing	sing	Acceptable Acceptable	Not Acceptable Not Acceptable	Explain:					
Locking Cap		Acceptable	Not Acceptable	Explain:	ıſ /Δ				
Well Label (ou	itside)	Acceptable	Not Acceptable) Explain:	Nog-exis	tent			
Well Label (ins	•	Acceptable	Not Acceptable	Explain:	7 - 4 - 64 - 7	1			
J-Plug	,	Acceptable	Not Acceptable	Explain:					
				PURGE METH	OD				
Date: Dal	715	Time: 17		Method:	Law Am				
Total Well Dep	oth (ft)	= 27.8							
Depth to Wate		= 5.6							
Water Column	(ft):	= 33.8	4	1231					
Comments:				1 volume					
*0				OBSERVATIO	NE				
Odor:	None L	ow , High		Like , Other:	NO	Sh	an a	phose	water
Comments:		_	-		10.1			<i>P</i> 1	
	Water	المعال جوا	p/bloch	siety	at fire	r, belles	black	+ Cares	I'M WELL
			FI	ELD PARAMET	TERS				3 001 10
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
1251	0.0	248	6.87	0.73	-64.3	8.750	17 .35	<10 NTU	5.60
1756	0.4	240	6.40	0.09	-78.5	9.686	17.40	94.8	6.00
1301	0.7	240	6.36	0.21	-90.2	8,958	17.29	38.9	5.99
1306	1.8	140	4.36	0.18	-97	9.108	17.46	851.2	5.47
1311	1.3	246	6.36	0.17	-47.7	9.198	17.52		
1316	1	240	6.34			750.074			6.02
	1.6	240	 	0.16	-96.9	9.204		8219	5.48
1321	2-0		6.33	0.15	-96.6		17.27		
1326	2.4	246	6.31	0.15	-93.7	9.243	17.15	· · · · · ·	5.99
1331	2.8	240	6.31	0.15	- 95	9.759	17.08	11.1	5.96
1336	2.9	740	6.31	0.14	-91.4	9.767	17.16		5.87
1341	30	240	6.32	0.14	-99-6	9.255	17.12	11.5	5.80
1346	<u> </u>								
				SAMPLING					
Date: 091	719			Time: 13	46				
Sample ID:	ONC- N	1cm - 606	D	Method of San	nple Collection:	Genb			
Analytical Para	meters:	IC TO	C, Chlori	કેલ		-			
Q.C. Sample T		MS/MSD	Duplicate	Duplicate Sam	ple ID: NA				
Q.C. Paramete									
Trash picked u			Well locked?	Υ. /		. <u>. </u>			
SIGNED/SAMF	LER:	7/1	at Il						

 $\sqrt{}$

_	(ft)	Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Whigh	Field Crew: Field Conditions: Not Acceptable Not Acceptable Not Acceptable Not Acceptable Not Acceptable Not Acceptable	6, ne	OD Lowflo	Purpose of Sam	opling:	OMC Que	arterly Sampling
Well Pad Protective Casing Well Casing Locking Cap Well Label (outside) Pelug Date: 9/17/16 Total Well Depth (f) Depth to Water (ft)	MC (ft)):	Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Time: 120 = 9.82 = 3.72 = 6.10	Not Acceptable	WELL CONDITE Explain: Explain: Explain: Explain: Explain: Explain: Explain: Explain: Explain: And the discount of the condition of the conditi	OD Lowflo		ppling:	OMC Que	arterly Sampling
Well Pad Protective Casing Well Casing Locking Cap Well Label (outside) Well Label (inside) J-Plug Date: 9/17-/19 Total Well Depth (f) Depth to Water (ft)	(ft)):	Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Time: 120 = 9.82 = 3.72 = 6.10	Not Acceptable	WELL CONDITE Explain: Explain: Explain: Explain: Explain: Explain: Explain: Explain: Explain: And thod:	od Lowflo	L			24
Protective Casing Well Casing Locking Cap Well Label (outside) Well Label (inside) Delug Date: 9/17/16 Total Well Depth (f) Depth to Water (ft) Water Column (ft):	(ft)	Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Time: 120 = 9.82 = 3.72 = 6.10	Not Acceptable	WELL CONDITE Explain: Explain: Explain: Explain: Explain: Explain: Explain: Explain: Explain: And thod:	od Lowflo	L			21
Protective Casing Well Casing Locking Cap Well Label (outside) Well Label (inside) Delug Date: 9/17/16 Total Well Depth (f) Depth to Water (ft) Water Column (ft):	(ft)	Acceptable Acceptable Acceptable Acceptable Acceptable Acceptable Time: 120 = 9.82 = 3.72 = 6.10	Not Acceptable Not Acceptable Not Acceptable Not Acceptable Not Acceptable Not Acceptable	Explain: Explain: Explain: Explain: Explain: Explain: Method:	Lowflo	Por-			21
Well Casing Locking Cap Well Label (outside) Well Label (inside) J-Plug Date: 9/17-/14 Total Well Depth (f) Depth to Water (ft) Water Column (ft):	(ft)	Acceptable Acceptable Acceptable Acceptable Acceptable Time: 124 = 9.82 = 3.72 = 6.10	Not Acceptable Not Acceptable Not Acceptable Not Acceptable Not Acceptable	Explain: Explain: Explain: Explain: Explain: Explain: Method:	Lowflo	L uc			ži.
Nell Label (outside) Nell Label (inside)	(ft)):	Acceptable Acceptable Acceptable Time: 120 = 9.82 = 3.72 = 6.10	Not Acceptable Not Acceptable Not Acceptable Not Acceptable	Explain: Explain: Explain: Explain: Explain: Method:	Lowflo	Por-			21
Well Label (outside) Vell Label (inside) Vellug Date: 9/17-/14 Fotal Well Depth (ft) Depth to Water (ft) Water Column (ft):	(ft)):	Acceptable Acceptable Time: 124 = 9.82 = 3.72 = 6.10	Not Acceptable Not Acceptable Not Acceptable	Explain: Explain: Explain: Explain: PURGE METH Method:	Lowflo	L			
Well Label (inside) J-Plug Date: 9/17-/16 Total Well Depth (f) Depth to Water (ft) Water Column (ft):	(ft)):	Acceptable Acceptable Time: 124 = 9.82 = 3.72 = 6.10	Not Acceptable Not Acceptable	Explain: Explain: PURGE METH Method:	Lowflo	₹~~	£		
D-Plug Date: 9/17-/16 Fotal Well Depth (f Depth to Water (ft) Water Column (ft):	9 (ft)):	Acceptable Time: 124 = 9.82 = 3.72 = 6.10	Not Acceptable	Explain: PURGE METH Method:	Lowflo	L u-	23		
Date: 9/17-/16 Fotal Well Depth (f Depth to Water (ft) Water Column (ft):	(fit)): :	Time: 124 = 9.82 = 3.72 = 6.10	15	Method:	Lowflo	<i>}</i>	ga		
Fotal Well Depth (f Depth to Water (ft) Water Column (ft):	(fit)): :	= 9.82 = 3.72 = 6.10	15	Method:	Lowflo	Luc	23		
Fotal Well Depth (f Depth to Water (ft) Water Column (ft):	(fit)): :	= 9.82 = 3.72 = 6.10		1 volume			ga		
Depth to Water (ft)): :	= 3.72 =6.10			nic.		£ŝ		
Water Column (ft):	: 	=6.10			nie.		23		
• •	<u> </u>				NIC .				
Comments:	one Los	w . Hinh			MC.			-1	
	one Lov	w High		ORSERVATIO	NE				
	one Lov	w . High		UBCEBNYTIN					
Odor: (No	Jile J Loi		, H₂S Fuell	Like , Other:	113	-			
		. , , , , , , , , , , , , , , , , , , ,	, n ₂ 3 , rueri	LIKE , Ollier.					
Comments:	0	.	1 ~						
Nogsi	201	Stept 0	+ PURGE	LD PARAME	FRS				
ime	lume	Rate		DO	ORP	Specific	Temp	Turbidity	Depth to water
(ga	al)	(mL/min)		(mg/L)	(mV)	Conductance (mS/cmc)	(°C)	(NTU)	(feet)
1250	She	ct Pu	+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	
	32		rye			-	<u> </u>		1
1255	-	290	-	8.48	42.				4,00
1350	5	290	6.642.22	7.68	-63.0	1.633	19.34	0.0	4.09
355 5	5.5	290	7.55	0.34	-76.6	1.621	19.39	0.0	4.08
1400 5	5.8	275	7.69	0.21	-86.9	1.009	19.74	0.0	3.96
	0	275	7.74	6.21	-91.8	1.603	19.67	6.0	4.63
	0.5	275	7.81	0.19	-96.2	1,604	19.46		4.05
					-97.8	1.594	19.55	0.0	4.07
	6.7	275	7.83	6.19	17.0	1 3 7 7	1,1,3,	0.0	1.07
1420 8	MA	PLF							
			83						
	l.			SAMPLING			·		
ate: 9/17/19	· · · · · · · · ·			Time: 4 Z	<u> </u>			_	
						~ .			
ample ID: MMC				method of San	nple Collection: (かるら			
nalytical Paramete		(s, foc, (
.C. Sample Type:	: N/4	MS/MSD	Duplicate	Duplicate Sam	ple ID: NA				

Q.C. Parameters: N/수

Trash picked up?

SIGNED/SAMPLER:

Well Mcked?

Field Data Sheet - OMC Groundwater Site

Well Number: MW-607D

J.G. M.G. Field Crew:

Purpose of Sampling:

OMC Quarterly Sampling

Site:

OMC

Field Conditions: 65° F Over 105 F

WELL CONDITION Explain:

Explain:

Explain:

Explain:

Explain:

Well Pad

Protective Casing

Well Casing **Locking Cap**

J-Plug

Well Label (outside) Well Label (inside)

Acceptable Acceptable Acceptable

Acceptable

Acceptable

Acceptable

Acceptable Not Acceptable

Not Acceptable

Not Acceptable

Not Acceptable

Not Acceptable

Not Acceptable Not Acceptable Explain: Explain:

PURGE METHOD

Date: 9(17/17

Time: 0805

Method: Low Pland

Total Well Depth (ft)

= 276

Depth to Water (ft):

= 2.89

Water Column (ft):

=24.79

Comments:

1 volume

OBSERVATIONS

Odor:

None Low , High , H₂S , Fuel Like , Other:

Comments:

No YSI Q Start of PURGE

			FIL	ELD PARAMET	ERS				
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
			+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	**
0910	Start 1	Durge							
08/5	\	210	,—		_	<u> </u>	_	-	4.02
0920		120	~		_	-	_		3.90
0850	22.5	200	7.23	1.02	-38.8	5.126	15.89	0.0	4.06
0855	2.95	200	736	6.30	-98.2	5.37	15.54	0.0	4.06
6100	3.00	200	7.43	0.25	-110.3	5.416	15742	0.0	4.06
0905	3.25	200	7.49	0.22	7/27,2	5.421	15-47	0.0	4.08
6910	3.5	200	7.52	15.0	-/339	5.428	15-32	0.0	4.08
0915	3.75	700	153	6.20	~139.5	5:427	15.24	0.0	4.09
0920	24.00	200	7.54	0.20	-147.4	5.418	15.28	0,0	4.09
0975	Sya	IPCE.							
· · · · · · · · · · · · · · · · · · ·									

SAMPLING

Date: 9/17/19

Time: 0975

Sample ID: OM (-MW-GO7)

Method of Sample Collection: Fxc 4

Fe = 0.0 mg/L

Analytical Parameters: VOC TOC, C(-

Q.C. Sample Type: WA MS/MSD

Duplicate

Duplicate Sample ID: N/A

Q.C. Parameters: NA

Trash picked up?

SIGNED/SAMPLER:

Wellylø}cked?

					ing wen				
	14 4.				OMC Groundwate		39.5		
Well Number:	_	לדי		16-156	معادمه و	Purpose of Samp	oling:	OMC Qua	rterly Sampling
Site:	OMC		Field Conditions:	WELL CONDIT	68 UF				
Well Pad		Acceptable	Not Acceptable	Explain:					
Protective Cas	sing	Acceptable	Not Acceptable	Explain:					
Well Casing		Acceptable	Not Acceptable	Explain:					
Locking Cap		Acceptable	Not Acceptable	Explain:	N/4	•			
Well Label (ou	itside)	Acceptable	Not Acceptable	Explain:	Mareniste	rt			
Well Label (ins	side)	Acceptable	Not Acceptable	Explain:					
J-Plug		Acceptable	Not Acceptable	Explain:					
Date: 441	21.4	Time: #66		PURGE METH					_
Date: 6017	•	Time: 78	0 (3	Method:	low flow				
Depth to Wate		= 3.22							
Water Column		100							
Comments:		Q.O	•	1 volume					
Comments:									
	- 124			OBSERVATIO	NS				_
Odor:	None . Lo	ow , High	, H ₂ S . Fuel	Like , Other:					4/610
Comments:									
		I	FII	ELD PARAMET	1	Specific	_	<u> </u>	
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
<i>0</i> 810	0.0	320	6.21	1.15	27-4	1.748	20-36	17-2	3.24
0815	0.4	370	6.73	0.49	-77-l	1-359	20.41	1.2	3-24
0870	0.9	320	701	0.32	-118	1.382	20.45	0.00	3.24
0825	1.5	320	7.15	6.28	-143.6	1.384	20.46	0.00	3-24
0830	1.9	<u> </u>		0.75		1.385		ļ	3.74
	· · · · ·	370	7.77	1	-153.1		205		
0835	2.4	320	7.27	0.24		1.379	2050		-
0840	3.0	320	7-31	0.22	-1585	1.374	20.52	0.00	3.24
				SAMPLING					
Date: 09	11719			Time: 08	45				
		14-607	5		nple Collection:	Cocab			
ا Analytical Para	meters:	VOC TO	sc, chbri	de	· ·	J J			
Q.C. Sample T		•			ple ID: NA	-			
Q.C. Paramete			- 25	aparate sum	, 1-/1)				
Trash picked u			Well locked?	11					
SIGNED/SAMP	ı	9	1111 1	7//					
			tall by	MA					

Field Data Sheet - OMC Groundwater Site Well Number: MW-6120 Field Crew: Mo Purpose of Sampling: **OMC Quarterly Sampling** 750f Sinny Site: OMC Field Conditions: WELL CONDITION Well nest inundated of v0.5' of standing water Well Pad Not Acceptable Explain: Ac eptable **Protective Casing** Not Acceptable Explain: Well Casing Acceptable Not Acceptable Explain Locking Cap Acceptable Not Acceptable Explain: Well Label (outside) Not Acceptable Explain: Well Label (inside) Acceptable Not Acceptable Explain: J-Plug Acceptable Not Acceptable Explain: **PURGE METHOD** Time: 10(0 Date: 9/18/19 Method: ION flow = 36.61 Total Well Depth (ft) = a.97 Depth to Water (ft): = 23.64 Water Column (ft): 1 volume Comments: price @ 1010 **OBSERVATIONS** H₂S , Fuel Like , Other: Odor: Comments: observed / Yellowish water Slight Sheen FIELD PARAMETERS Specific ORP Volume Rate DO Temp Turbidity Depth to water Time (s.u.) Conductance (mg/L) (gal) (mL/min) (mV) (°C) (NTU) (mS/cmc) +/- 10% +/- 0.1 s,u, +/- 10 mV <10 NTU 6.44 2.3 4.85 275 1.70 410 10222 5-06 275 4.10 1030 6.25 4.818 -17.1 -18. a 1035 4.804 16.5 275 4.02 louo 4.02 1045 04 -23.6 4.60 -91 17.54 3.72 1050 -98.5 4.66 1055 275 5.98 1.52 13.23 3.72 4.50 **2**75 5.91 1.5 1100 17.61 -27.3 1105 N3.5 1.51 4.500 3 5.88 -26. D Q>5 0 SAMPLING 9/18/19 Time: \(\O Date: (612D) Method of Sample Collection: Caro Sample ID: OMC MW - 6120 Analytical Parameters: 0C,70(, C) Q.C. Sample Type: WA MS/MSD Duplicate Duplicate Sample ID: NIV Q.C. Parameters: Trash picked up? Well locked? SIGNED/SAMPLER:

					ous s					
Well Number	(10	0		21 1	OMC Groundwal		odlina.	ONEC Our	ndady Camplina	
Site:	0.23			KIRAK	0	Purpose of Sam	iping.	OMC Quarterly Sampling		
Oite.	OIVIO			WELL CONDIT	4	-				
Well Pad		Acceptable	Not Acceptable	Explain:		-				
Protective Ca	sing	Acceptable	Not Acceptable	Explain						
Well Casing		Acceptable	Not Acceptable	Explain						
Locking Cap		Acceptable	Not Acceptable	Explain						
Well Label (o	utside)	Acceptable	Not Acceptable	Explain:						
Well Label (inside)		Acceptable	Not Acceptable	Explain:						
J-Plug		Acceptable	Not Acceptable	Explain:						
Date: 9/18	2/19	Time: / 0	the state of the s	PURGE METH Method:	_					
Total Well De	/ /	= 10.8			low flow					
Depth to Wate	er (ft):	= 3.29	/							
Water Column	n (ft):	= 7-61								
Comments:				1 volume						
			(3.52)	OBSERVATIO	NS		2	y .		
Odor:	None L	.ow , High	, H₂S , Fuel	Like , Other:						
Comments										
		 								
	Volume	Rate	FI.	ELD PARAMET	ORP	Specific	Temp	Turbidity	Don'th to water	
Time	(gal)	(mL/min)	pH (s.u.)	(mg/L)	(mV)	Conductance (mS/cmc)	(°C)	(NTU)	Depth to water (feet)	
1			+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU		
1025	+ +	340	850	1.20	21.3	2.825	19.70	0	3.30	
1030	-	340	7.26	0.42	-18.4	2:690	19:45	0.7	3.30	
1035	-	340	7.10	0.27	-52.4	2.647	19:41	0.9	3,30	
1040		340	7.02	0.22	-72.4	2.616	19.63	4.3	3.30	
1045	$\perp \perp$	340	6.98	0.20	-82.4	2.550	19.61	0.0	3.30	
1050		340	6.96	0.20	-88.1	2.546	19.63	0.0	3:30	
1055	1	340	6.94	0.19	-92.2	2.533	19.60	0.0	3.30	
1100	w 3.5	340	6.93	0.19	-94.9	2.531	19.77	1	3,30	
			Samp							
			o my		7707					
							1		100	
	1	†					 		- 1/2	
	1	.1		DAMES INC.	I.	- 2 mg 12 mg				
Tate: 9/10	2/19			SAMPLING Time: // C					 	
Date: 9//8	/	nW612.	c			C- 1				
					nple Collection:	Grab				
			, chlor		_		=			
Q.C. Sample T	45	MS/MSD			ple ID: Oma	C-MW6	125-R	_ //.	. 10	
Q.C. Paramete		C) TOC	-, Chlor	ide						
Trash picked u	ip? Y	1	Well locked?	7						
SIGNED/SAM	PLER:	1	1	1//_						

Field Data Sheet - OMC Groundwater Site Field Crew: M/ (JG Purpose of Sampling: Well Number: **OMC Quarterly Sampling** 613D JOFF Site: **OMC** Field Conditions: Non-cristent Well Pad Acceptable Not Acceptable Explain: Acceptable Protective Casino Explain: Not Acceptable Well Casing Acceptable Not Acceptable Explain: Explain: Non-existent **Locking Cap** Acceptable Not Acceptable Well Label (outside) Not Acceptable Explain: Acceptable Well Label (inside) Acceptable Not Acceptable Explain: J-Plug Acceptable Not Acceptable Explain: **PURGE METHOD** Time: 0916 Date: 091819 Method: lan Am 25.78 Total Well Depth (ft) 4.05 Depth to Water (ft): Water Column (ft): 21.73 1 volume Comments: **OBSERVATIONS** None , Low 🖟 High , H₂S , Fuel Like , Other: Odor: snell, slightly block water, sheen Sulfuc-like Comments: FIELD PARAMETERS Specific ORP Volume Ю Temp Turbidity Depth to water Time ρН (s.u.) Conductance (gal) (mL/min) (mg/L) (mV) (NTU) (°C) (mS/cmc) +/- 0.1 s,u, +/- 10% +/- 10 mV +/- 3% <10 NTU +/- 3% 0818 0.0 -130 4,142 360 6.26 1.64 4.05 14-69 11-1 0.5 0823 . 272.4 5.00 260 6.79 0.27 4.125 14.15 6.6 6.90 - 278.2 5.7 4.80 0828 4.108 760 14.45 0-4 0.18 4.073 0833 7.60 7.03 - 2801 14.39 4.80 2.4 0.16 - 302.9 4.061 4.81 260 7.09 14.14 0838 0.15 प ४) 4.088 7.11 8.14 0.5 0843 260 -305.9 14.14 1.9 4.80 0848 2.3 260 7.14 0.14 - 305.6 4-000 14.32 0.0 SAMPLING 091819 0850 Date: Time: Method of Sample Collection: (TT 46 OHC- 61 OHC- HW-613D Sample ID: VOC, TOC, Chloride Analytical Parameters: MS/MSD Q.C. Sample Type: N Duplicate Duplicate Sample ID: Q.C. Parameters: Trash picked up? Well locked? SIGNED/SAMPLER:

Field Data Sheet - OMC Groundwater Site Well Number: MU-6135 Field Crew: 56, MG Purpose of Sampling: **OMC Quarterly Sampling** Field Conditions: G5 F Sunny
WELL CONDITION OMC Site: Well Pad Acceptable Not Acceptable Explain:

Protective Casing Acceptable Not Acceptable Explain: Well Casing ecceptable Not Acceptable Explain: Locking Cap Acceptable) Not Acceptable Explain: Well Label (outside) Acceptable Not Acceptable Explain: Well Label (inside) Acceptable Explain: Not Acceptable J-Plug Acceptable Not Acceptable Explain:

PURGE METHOD

Date: 9/18/19 Time: 04/2 Method: Low Flow

= 10.95 Total Well Depth (ft)

3.88 Depth to Water (ft):

Water Column (ft):

1 volume Comments:

OBSERVATIONS

None, Low , Odor: High , H₂S , Fuel Like , Other:

Comments:

			FIE	ELD PARAMET	TERS				
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
			+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	
0815	STAR	TPUIZI	hE.						
6470	6-3	270	7.03	0.24	-20.5	2.109	19.29	3.74	4.94
04825	0.6	250	7.24	0.08	-53.6	2.139	18.89	1.82	5.09
6430	1.6	250	730	0.06	-76.4	2,151	18.56	1.66	5.06
0835	1.3	250	7.36	6.03	-72.1	2.155	18.27	1.70	5.08
0840	l. ζ _α	250	7.40	0.12	-66.6	2.154	18.20	1.24	5.11
0845	2.0	250	7.42	0.11	~60.Z	2'150	18-23	1.17	5-14
0850	2.3	750	7.45	0.0€	-65.7	2.141	18.58	1.24	5.15
0855	7.6	250	7.45	0.02	-82.1	2.143	18.41	1.08	5.16
6900	30	150	7.46	0.02	-74.9	2.142	18.45	1.14	5.20
0965	3.3	250	2.44	0.02	-1033	2.140	1802	1.02	5.21
0110 -	500	Û.							3

SAMPLING Date: 9/18/19

(JG) 0920

Sample ID: GMC-MW-G135

Method of Sample Collection: Grab

Analytical Parameters: VOC5, TOC, CI

Q.C. Sample Type: 10/A MS/MSD Duplicate Duplicate Sample ID: NA

Q.C. Parameters: NA

Trash picked up?

SIGNED/SAMPLER:

					3				
		. 25			OMC Groundwa				
Well Number:	_	(3)	Field Crew:			Purpose of Sam	pling:	OMC Qua	rterly Sampling
Site:	ОМС		Field Conditions:	WELL CONDIT	una Y				
Well Pad		Acceptable	Not Acceptable	Explain:					
Protective Cas	sing	Acceptable	Not Acceptable	Explain:					
Well Casing		Acceptable	Not Acceptable	Explain:					
Locking Cap		Acceptable	Not Acceptable	Explain:		See P	998	t	
Well Label (ou	ıtside)	Acceptable	Not Acceptable	Explain:		Jec P	8		
Well Label (in:	side)	Acceptable	Not Acceptable	Explain:					
J-Plug		Acceptable	Not Acceptable	Explain:					
				PURGE METH	OD				
Date:	4 450	Time:		Method:					
Total Well Der		=							
Depth to Wate		Ē			5	iee pa	9e 1		
Water Column	i (it):	=		4		7	8		
Comments:				1 volume					
				OBSERVATIO	vs				
Odor:	Nome Lo	ow , High		Like , Other:		***			
Comments:									
			FI	ELD PARAMET	ERS	In			
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
	**		+/- 0.1 s,u,	+/- 10%	+/- 10 mV	(mS/cmc) +/- 3%	+/- 3%	<10 NTU	**
0960	3.6	225	7.45	0.0Z	-109.7	2.140	7.45	1.05	5.27
0915	4.0	225	7.46	0.02	-112.9	2.139	7.46	1.03	5.24
0920	SAW	PLE						1	
	1								
	<u> </u>						 		
	-					-		 	
								1	
	ļ								
	<u> </u>								
						<u> </u>			
				SAMPLING					
Date:				Time:					
Sample ID:				Method of San	ple Collection:				
Analytical Para	meters.					See	Daa	0	
-		MS/MSD	Dunliante	Duplicate Ca	nle ID:		7	·	
Q.C. Sample T		INIO/INIOD	Duplicate	Duplicate Sam	pie IU:				
Q.C. Paramete			144-111. · · · ·						
Trash picked u			Well locked?		1				
SIGNED/SAMF	LER:		See	page	l				
				0					

Monitoring Well Field Data Sheet - OMC Groundwater Site Well Number: MW-6140 Field Crew: 12-12 Purpose of Sampling: **OMC Quarterly Sampling** KM Site: OMC Field Conditions: WELL CONDITION Acceptable Well Pad Not Acceptable Explain: P.1 of 2 Acceptable **Protective Casing** Not Acceptable Explain: Well Casing Acceptable Not Acceptable Explain: Acceptable **Locking Cap** Not Acceptable Explain: Well Label (outside) Acceptable Not Acceptable Explain: Well Label (inside) Acceptable Not Acceptable Explain: J-Plug Acceptable Not Acceptable Explain: **PURGE METHOD** Date: Time: 1520 Con flow Method: = 29.82 Total Well Depth (ft) = Q.83 Depth to Water (ft): Water Column (ft): 1 volume Comments: **OBSERVATIONS** (None), Low . Odor: Hīgh , H₂S , Fuel Like , Other: Comments: FIELD PARAMETERS Specific Volume Turbidity DO Depth to water Time (s.u.) Conductance (gal) (mL/min) (mg/L) (mV) (NTU) (°C) (feet) (mS/cmc) +/- 0.1 s,u, +/- 10% +/- 10 mV ·/- 3% <10 NTU +/- 3% 1525 340 9.41 15.0 3.15 8.15 0.105 30% 23.35 1530 300 7.76 0.68 35.5 9.975 13.1 1535 300 31.6 7.64 0.30 10.01 2:0 1540 300 0.16 16.04 3.2 7.63 18.4 10.29 12,05 1545 300 <u> 7.64</u> o+14 2.4 10-40 16.50 2.1 1550 250 プ・67 -36.7 16.90 14-33 10.58 5.1 1555 250 10.70 15.05 7.68 1600 250 -9401 10.90 17.09 0:7 15.88 7.71 1605 250 7.75 -118.7 11.13 16.48 3.0 250 1610 7.78 11-35 16.90 17.00 2.3 0.12 137. 6 1615 200 7.81 0.12 150.9 11046 16.96 105 17.20 16:94 200 7.83 1620 0.12 11.56 1.0 17 38 -159.2 SAMPLING 9/17/19 Time: 1640 Sample ID: OMC - MW 614D Method of Sample Collection: VOC, TOC, Chloride Duplicate Sample ID: NA Q.C. Sample Type: NA MS/MSD **Duplicate**

NA Q.C. Parameters;

Well locked?

Trash picked up? SIGNED/SAMPLER:

			Fiel	d Data Sheet -	OMC Groundwar	ter Site			
Well Number:	mw-	614 D	Field Crew:			Purpose of Sam	pling:	OMC Qu	arterly Sampling
Site:	OMC	, , –	Field Conditions						
	- 2			WELL CONDIT	TON	- 4 3			
Well Pad		Acceptable	Not Acceptable	Explain:					
Protective Ca	sing	Acceptable	Not Acceptable	Explain:		v)	. of 2		
Well Casing		Acceptable	Not Acceptable	Explain:		ρα	. o. u		
Locking Cap		Acceptable	Not Acceptable	Explain:		1			
Well Label (or	utside)	Acceptable	Not Acceptable	Explain:					
Well Label (in	side)	Acceptable	Not Acceptable	Explain:					
J-Plug		Moceptable	Not Acceptable	Explain:		_ 8		-200	
Date: 9//	2/10	Time: / S	20	PURGE METH Method:	low At	A 1 /			
Total Well De	oth (ft)	= 29		Wictios.	1000 7 6	ow			
Depth to Wate		= 2.8							
Water Column		= 26.0							
	. ().	- ords	į (1 volume					
Comments:									
	~			OBSERVATIO	NS				
Odor:	None , Lo	w High		Like , Other:	140				
Comments:			_						
			FI	ELD PARAMET	TERS				
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance	Temp	Turbidity (NTU)	Depth to water
	(gai)		+/- 0.1 s,u,	+/- 10%	+/- 10 mV	(mS/cmc) +/- 3%	(°C) +/- 3%	<10 NTU	(feet)
1625		200	7.86	0.11	-166.4	11.72	16.84	0.8	17.60
1630		200	7.88	0.11	-170.8	11.81	16.74	5.5	17.75
1635	Nugal	200	7.90	0.11	-174.2	11.91	16.61	5.5	17.93
	1		0	/	16	1640			
			100	mpu	7 &	10 40	 	!	
					<u> </u>		+	 	
	1					+	 	-	
	1		-				-		
							ļ	ļ	
									-
				SAMPLING					
Date: 9/1	7/19				40				
Constitution in		11/11/0		Mothod of Con	nple Collection:	C 1			
Sample ID:					uble collection:	U MUS			
			_, Chlori		Ala				
Q.C. Sample T		MS/MSD	Duplicate	Duplicate Sam	ple ID: P				
Q.C. Paramete	ers: N/A								-13-0-più -1
Trash picked u	p? Y	1 -	Well locked?	Y	6500	- 1.55 d			
SIGNED/SAME	PLER:	1 1	Well locked!						

				Monito	oring Well				
					OMC Groundwat	er Site			
Well Number:	:MW-6	6145		. Ma		Purpose of Samp	oling:	OMC Qua	rterly Sampling
Site:	ОМС		Field Conditions	80°F S	Mny				
Well Pad		Acceptable	Not Acceptable	WELL CONDIT Explain:			1.0		t
Protective Ca	sino	Acceptable	Not Acceptable	Explain:	Well n	ust N O.S	of st	andi^	g water
Well Casing	o.r.ig	Acceptable	Not Acceptable	Explain:					
Locking Cap		Ackeptable	Not Acceptable	Explain:					
Well Label (or	utside)	Agceptable	Not Acceptable	Explain:					
Well Label (in	·	Acceptable	Not Acceptable	Explain:					
J-Plug		Acceptanie	Not Acceptable	Explain:					
				PURGE METH					
Date: 9/1	1/19	Time: \5 2	_	Method:	low flor	J			
Total Well De		= 10.7	8						
Depth to Water	• •	= 2.88							
Water Column	n (ft):	= 790	>						
Comments:				1 volume					
					10				
Odor:	None),	Low , High	. H₃S . Fuel	OBSERVATIO Like , Other:	NS	_			
Comments:		cow , riigii	, tigo , ruei	LIKE , OTHER.					
Commonio.									
			Fi	ELD PARAMET	TERS				
Time	Volume	Rate	pH (s.u.)	DO	ORP	Specific Conductance	Temp	Turbidity	Depth to water
	(gal)	(mL/min)	+/- 0.1 s.u.	(mg/L) +/- 10%	(mV) +/- 10 mV	(mS/cmc) +/- 3%	(°C) +/- 3%	(NTU) <10 NTU	(feet)
1525		200	1.37	7-64	88.7	1-051	20.97	977	2.48
1530		250	6-80	0.18	102.0	1-066	19.58	7.30	2,98
1535		250	6-78	0-11	99.2	1.065	19.53	3.07	2.98
1540					81.9	1-033	19.40		9.2-98
1545		250	6.82	0.13	72.6	•			2.98
	1		;			1.0)4	19.41		2.98
1550	+	250	6.83	0:11	65.8	0-996	19.46	1.90	2.48
	-								
	ļ	_		<u> </u>					
	•	•	•	SAMPLING		-			
Date: 9/1	7/10				555				
ا / ا Sample ID: ا	1/1/[(A)	211		nple Collection:	\ calo			
Analyticat Para	meters.	mw-61	((())	المحادث		jiano			
			C, Chloric		nla IDi 🕟 🖍				
Q.C. Sample T			Duplicate	ouplicate Sam	ple ID: N/A				
Q.C. Paramete		<u> </u>							
Trash picked u		Y	Well locked?	4					
SIGNED/SAMI	rleff:		MA	7 /					
			$\langle \langle \langle \rangle \rangle \rangle / \langle \langle \rangle \rangle$	\					
			W						

Monitoring Well

Field Data Sheet - OMC Groundwater Site Field Crew: R.K.M Well Number: Purpose of Sampling: OMC Quarterly Sampling 615D OMC Field Conditions: Site: WELL CONDITION Well Pad Acceptable Not Acceptable Explain: Acceptable Protective Casing Explain: Not Acceptable Page 1 0 2 Well Casing Acceptable Not Acceptable Explain: Acceptable Locking Cap Not Acceptable Explain: Acceptable Well Label (outside) Not Acceptable Explain: Well Label (inside) Acceptable Not Acceptable Explain: J-Plug Acceptable Not Acceptable Explain: **PURGE METHOD** Date: 9/17/19 low flow Time: /300 Method: 27.35 Total Well Depth (ft) 3.90 Depth to Water (ft): 2345 Water Column (ft): 1 volume Comments:

OBSERVATIONS

Odor:

High ,

H₂S , Fuel Like , Other:

Comments:

			FII	ELD PARAMET	ERS	80		gerander og	\$2-e80s
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L) +/- 10%	ORP (mV) +/- 10 mV	Specific Conductance (mS/cmc) +/- 3%	Temp (°C) +/- 3%	Turbidity (NTU) <10 NTU	Depth to water (feet)
1300	-	340	8.74	2674		6.353	19.98	12	5.80
1305		340	9.31	0.28	55.2	6:327	19.27	3.1	6.02
1310		340	9-35	0.22	48.4	6.329	18-42	2.1	6.02
1315		340	9.45	0.18	42.7	6.679	16.86	2.1	6.02
1320		340	9.53	0.14	37.3	67.335	16.38	3.3	6.02
1325		340	9.60	0.13	28.8	7.793	16.36	400	6.02
1330		340	9.68	0-12	7.5	8.078	16.26	404	6.02
1335		340	9.75	0.11	-84.5	8.251	16-17	1.3	6.02
1340		340	9.78	0.11	-224-2	8.297	16.15	1.6	6.02
1345		340	9.79	0.11	-298.5	8.287	16.24	1.3	6.02
1350		340	9.81	0.10	-333·5	8.286	16-10	1.2	6.02
1355		340	9.82	0.10	-357.3	8.292	16.17	1.0	6.02

SAMPLING

Date: 9/17/19

Time: Selp2

Sample ID: OMC-MW 615D

Method of Sample Collection: Goals

Analytical Parameters: VOC, TOC, Chloride

Q.C. Sample Type:

MS/MSD

Duplicate

Duplicate Sample ID:

Q.C. Parameters:

Trash picked up?

Well locked?

SIGNED/SAMPLER:

				MOTITE	ming wen				
			Fie	ld Data Sheet	OMC Groundwate	er Site			
Well Number:	6151)	Field Crew:	R.K/K	-Ma	Purpose of San	npling:	OMC Qua	arterly Sampling
Site:	OMC		Field Conditions	0++0)	- / /				
Well Pad		Acceptable	Not Acceptable	WELL CONDIT	nogy				
Protective Ca	sina	Acceptable	Not Acceptable	Explain:					
Well Casing	g	Acceptable		Explain:			O	0	2 % 2
Locking Cap		Acceptable	Not Acceptable	Explain:			Pag	70 -	В
Well Label (or	utside)	Acceptable	Not Acceptable	Explain:					
Well Label (in	side)	Acceptable	Not Acceptable	Explain:					
J-Plug		Acceptable	Not Acceptable	Explain:					
1	,			PURGE METH					
Date: 9//.	7/19	Time: /3		Method:	low flo	no e			
Total Well De		= 27.3	-						
Depth to Wate		= 3.90	0						
Water Column	n (III):	=		1					
Comments:				1 volume					
<u> </u>				OBSERVATIO	INS				
Odor:	None, L	ow , High	, H ₂ S , Fuel	Like , Other:					
Comments:		_	90 (80%		r d d				
7	tumes	was	VOL Na	s am	le Lilling	L			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1	F	IELD PARAME		Specific		T	
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	(mg/L)	ORP (mV)	Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
	·		+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	
1400		340	9.82	0.10	-384.5	8-270	16.18	1.7	6.02
1405		340	9.83	0.10	-403.6	8.212	16-24	101	6.02
1410	À.	340	9.83	01/0	-420-8	8-249	16.49	0.4	6.02
1415		340	9.83	0.10	-432.5	8.269	16.63	0.1	6.02
1420	8 9	340	9.83	0.10	-443-4	8-269	16.73	0.3	602
1425		340	9.81	0.10	-448.3	8.257	16-62	1	6.02
1430		340	9.81	01/0	1 ''	8.262	16.65		6.02
1435		340	9.81	0.10	-460.3	8 235	16.59	0.0	6.02
		340	9.8-1	0.10		1	16-62		6.02
1440		1340			464.5	8.229	10.02	0.0	6.02
			Jan	aled (14	y 	 		
		+		+	<u> </u>		+	 	- 10
	1	<u> </u>				on Days		<u> </u>	
Date: 0/1	110			SAMPLING					
Date: 9//-				,	45	C ,			
Sample ID:		_			mple Collection: (nas			
Analytical Para			Chlori						
Q.C. Sample 1	Гуре:	MS/MSD	Duplicate	Duplicate San	nple ID:				
Q.C. Paramete									
Trash picked u	1		Well locked?	1					
SIGNED/SAMI	PLER:								

Monitoring Well Field Data Sheet - OMC Groundwater Site Field Crew: R-K/K. M Well Number: 6155 Purpose of Sampling: **OMC Quarterly Sampling** Summy Site: омс Field Conditions: WELL CONDITION Well Pad Acceptable Not Acceptable Explain: **Protective Casing** Acceptable Not Acceptable Explain: Acceptable Well Casing Not Acceptable Explain: Locking Cap Acceptable Not Acceptable Explain: Well Label (outside) Not Acceptable Explain: Acceptable Well Label (inside) Acceptable Not Acceptable Explain: Acceptable J-Plug Not Acceptable Explain: **PURGE METHOD** Time: /300 Date: 9/17/19 Method: Cow How = 11.42 Total Well Depth (ft) Depth to Water (ft): Water Column (ft): 1 volume Comments: **OBSERVATIONS** H₂S , Fuel Like , Other: None . Low , High , Odor:

Comments:

			FI	ELD PARAME	TERS				
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
		**	+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	
1320		340	7.55	4.66	1501	0.675	20.91	11.1	4.40
1325		340	7.14	0-22	127.1	0.670	20.39	3.88	4.40
1330		340	7.06	0.12	96.0	0.666	20.25	1.70	4.40
1335		340	7.02	0.20	6407	0.665	20.11	1.52	4.40
1340		340	7.11	0.18	45.2	0.666	20.10	1.42	4.40
1345		340	7.18	0.12	16.4	0.664	20.23	1:36	4.40
1350	Ü	340	7.15	0.16	7.8	0.666	20-04	1:57	4040
1355		340	7.15	0.15	-6.6	0.663	20.18	1.40	4.40
1800		340	7.15	0.16	-14.5	0.662	20.26	1.35	4.40
1405		340	7.14	0.14	-24.5	0.659	20.22	1.52	4.40
1410		340	7012	0.14	-35.9	0.659	20.17	1.46	4.40
1415	√	340	7.09	0.12	-38.6	0.658	20.26	1.39	4=40
1/120	25001	340	7.06	SAMPLING	- 29, 8-	0.655	20.24	lation	114110

Date: 9/17/19

Time: /425

Sample ID: OMC - MW6155

Method of Sample Collection:

Analytical Parameters: VOC, TOC, Chloride

MS/MSD

Duplicate Sample ID:

Q.C. Sample Type: NA Q.C. Parameters: NA

Well locked?

Trash picked up? SIGNED/SAMPLER:

Duplicate

Monitoring Well

				Monito	oring Well				
					OMC Groundwate	er Site			
Well Number:	MM-6	19D	Field Crew:	6/56		Purpose of Samp	oling:	OMC Qua	rterly Sampling
Site:	ОМС		Field Conditions:	cloud			<u> </u>		
				WELL CONDIT	TON				
Well Pad		Acceptable	Not Acceptable	Explain:					
Protective Cas	ing	Acceptable	Not Acceptable	Explain:					
Well Casing		Acceptable	Not Acceptable	Explain:					
Locking Cap		Acceptable	Not Acceptable	Explain:		. 1			
Well Label (out	side)	Acceptable	Not Acceptable	Explain:	Non-exis	+e0T			
Well Label (insi	ide)	Acceptable	Not Acceptable	Explain:					
J-Plug		Acceptable	Not Acceptable	Explain:					
Date: 59 (DIA	Time: . A	27	PURGE METH Method:	low flan		<u> </u>		
Total Well Depl	•	= 29-		Widitios.	LOW TIME	,			
Depth to Water		= 4.23							
Water Column		= 22.3							
	· 7	_ ~~ 2		1 volume					
Comments:									
				OBSERVATIO	M.C.				
Odor: /	None), L	ow , High		Like , Other:					
Comments:	<u> </u>	. 1	_						
	Yella	uish u	vater						
			Fil	ELD PARAMET	TERS				
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/l)	ORP	Specific Conductance	Temp	Turbidity	Depth to water
			+/- 0.1 s,u,	(mg/L) +/- 10%	(mV) +/- 10 mV	(mS/cmc) +/- 3%	(°C) +/- 3%	(NTU) <10 NTU	(feet)
1030	2.6	240	7.94	0.93	- 35	4-724	16-41	205	4.23
1035	2.7	240	8.15	0.23	-194.4	5.008	15.06	15	4.76
1040	3.0	246	8.18	6.17	-221.5	4 988	14.74	4	4.26
1045	3.3	240	8.70	0.15	-222-4	4 999	14.87	6	4-25
		240			773.8	-			<u> </u>
1050	3.7	240	8.22	0.13	- 665.0	5.016	14.98	0.00	4.25
								ĺ	
							_		
					l		1		
				SAMPLING				#1	
Date: 🔭	1719			Time: (85	55				
Sample ID:	DMC- M	14-619	D	Method of San	nple Collection:	Grab			
Analytical Paran			C. Chlori	de		0			
Q.C. Sample Ty					ple ID: NA				
					, , ,,				
Q.C. Parameters rash picked up		-	Wall lockado	,					
SIGNED/SAMPI	į.	11	Well locked?	11/					
JUNEO/SAIVIE	LETI.	1/1	11011 1	L. W /l.					

Monitoring Well

Field Data Sheet - OMC Groundwater Site Well Number: MW- 6195 JG, MG Field Crew: Purpose of Sampling: **OMC Quarterly Sampling** 650 = Overcast Site: OMC Field Conditions: WELL CONDITION Sinkily Well Pad Not Acceptable Acceptable Explain: Protective Casing Acceptable Not Acceptable Explain: Well Casing Acceptable Not Acceptable Explain: Locking Cap Acceptable Explain: Not Acceptable Well Label (outside) cceptable Not Acceptable Explain: Well Label (inside) Acceptable Not Acceptable Explain: J-Plug cceptabl Not Acceptable Explain: **PURGE METHOD** 0435 Method: low flow Date: 1/17/19 Time: = 10.89 Total Well Depth (ft) = 3.78 Depth to Water (ft): Water Column (ft): =7.11 1 volume Comments: **OBSERVATIONS** H₂S , Fuel Like , Other: Wone . Odor: Low , High ...

			FI	ELD PARAMET	TERS				
Time	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
			+/- 0.1 s,u,	+/- 10%	+/- 10 mV	+/- 3%	+/- 3%	<10 NTU	
0940	5 Kert 7	was							
3745	_	250	803	0.66	38.6	1.543	19.52	2.5-	3.83
0950	0.7	250	7.82	0.33	12.4	1.470	19.21	0.0	3.83
0955	1.0	750	7.21	0.27	-19.8	1.461	19.14	0.6	3.83
1000	1.3	250	7.66	0.27	-34.3	1.460	19.12	0.0	383
1005	1.6	250	7.63	0.25	-5-1.2	1.457	19.16	0.0	3.83
1010	2.0	250	7.60	0.23	-649	1.454	19.17	6.0	3.82
1015	2.3	250	7:58	0.22	-77.4	1.85-1	19.14	0.0	3.82
1020	2:2	750	7.57	0.21	-82.5	1.449	19.22	0,0	3.82
1025	3.0	250	7.56	0.21	-8611	1.446	19.25	0.0	3.82
1030	501	NOLF							

SAMPLING

Date: 9/17/19

Comments:

1030

Sample ID: DMC-MW-6195

Method of Sample Collection: A.S.

Analytical Parameters: VOCs TOC (1

Q.C. Sample Type: A A MS/MSD

Duplicate Sample ID: N /4

Q.C. Parameters: N/A

Trash picked up?

SIGNED/SAMPLER:

Well Jocked? V

Duplicate

Monitoring Well Field Data Sheet - OMC Groundwater Site Well Number: MW-620D Field Crew: MG/JG Purpose of Sampling: **OMC Quarterly Sampling** 75°F Suny, Field Conditions: Site: WELL CONDITION Well Pad Acceptable Not Acceptable Explain: **Protective Casing** Acceptable Not Acceptable Explain: Well Casing Acceptable Not Acceptable Explain: Locking Cap cceptable Not Acceptable Explain: Non existent Explain: Well Label (outside) Acceptable Not Acceptable Non existent Well Label (inside) Explain: Acceptable Not Acceptable J-Plug Acceptable ot Acceptable Explain: **PURGE METHOD** Time: 1347 Date: 00/16/17 Method: Low Claw = 30.72 Total Well Depth (ft) 5.2 Depth to Water (ft): = 15.52 1.02 Sal Water Column (ft): Comments: **OBSERVATIONS** None , Low , High , H₂S , Fuel Like , Other: Odor: smell, bubbles in water (causing turbidity to jump around) Comments: Sulful -like FIELD PARAMETERS Specific ORP DO Temp Volume Rate Turbidity Depth to water Time (s.u.) Conductance (mg/L) (gal) (mL/min) (mV) (°C) (NTU) (mS/cmc) +/- 0.1 s,u, +/- 10% +/- 10 mV +/- 3% +/- 3% <10 NTU 1348 1.6 240 6-86 5.19 5.418 0.25 17.54 1509 -323.8 1353 0.3 5.529 5.19 240 6.93 0.22 - 330-8 17.75 175 1400 0.5 240 7.15 0-18 -349.6 5.739 369.1 5.24 17.21 0.8 5.835 1405 -358 3 78-4 5.25 240 7.78 1649 006 1.2 7.33 5.893 65.1 1410 740 0.15 -367.4 16.95 5.25 \$ 5.20 9.5 1415 1.6 240 7.37 0.14 -364 5,904 17.42 -363.5 1470 5.927 17.42 5.21 2.0 7.39 9.4 240 0.14 1425 -363.3 2.5 5.931 17.31 5,22 240 ついい 0.13

SAMPLING

19/16/19 Date:

Time: 1430

HW-6200 OHC-MW-6200 Method of Sample Collection: Grab

Analytical Parameters: VX, TOC, Chbitch

Q.C. Sample Type: | | | |

MS/MSD

Duplicate Duplicate Sample ID:

Q.C. Parameters: NIA

Trash picked up?

SIGNED/SAMPLER:

Monitoring Well Field Data Sheet - OMC Groundwater Site Field Crew: J. Fra La m / M. Gerlach Purpose of Sampling: Well Number: MW-6205 **OMC Quarterly Sampling** Field Conditions: Site: 70°FSunay WELL CONDITION Well Pad Acceptable Not Acceptable Explain Protective Casing Acceptable Not Acceptable Explain Acceptable Well Casing Not Acceptable Explain: **Locking Cap** Acceptable Not Acceptable Explain Acceptable Well Label (outside) Not Acceptable Explain: Well Label (inside) Acceptable Not Acceptable Explain: Acceptable J-Plug Not Acceptable Explain: **PURGE METHOD** Method: Con Mon Date: 9/16/19 Time: 1345 Total Well Depth (ft) = 11.02 Depth to Water (ft): = 416 = 6.86 Water Column (ft): 1 volume Comments: No 451 @ Start of purge lue to equipment molahoran Odor:

FIELD PARAMETERS Specific ORP Volume Rate DO Temp Turbidity Depth to water Time ρН (s.u.) Conductance (mL/min) (gal) (mg/L) (mV) (°C) (NTU) (mS/cmc) +/- 0.1 s,u, +/- 10% +/- 10 mV +/- 3% +/- 3% <10 NTU PURGE JTART 1350 1355 150 4.26 1105 150 4.50 ~ 1.5 150 0.20 -232.2 21.05 1435 2.8 4.31 7.22 2.418 ~1.1K 7.01 05 0-16 1440 150 20.99 -223.8 2.368 4.31 150 21.28 22 00 696 0.15 2.310 0.0 4.71 1445 -226.5 1450 2304 215 150 6.94 -230.0 21.14 00 0.15 4.32 1455 TMBLE

SAMPLING

Date: 9(16(19

Comments:

Black Particulates

Time: 1455

Sample ID: OMC-WW-GLOS

Method of Sample Collection: 4-45

Analytical Parameters: 104, Toc, Cl


Q.C. Sample Type: NA MS/MSD

Duplicate Sample ID: W/4

Q.C. Parameters: N/A-

Trash picked up? 4

SIGNED/SAMPLER:

Duplicate

			Field	d Data Sheet -	OMC Groundwat	er Site			
Well Number:	621	D	Field Crew: M	6156		Purpose of Sam	pling:	OMC Qua	rterly Sampling
Site:	ОМС		Field Conditions:	Gunny,	80°F				
		/2~	<u> </u>	WELL COMDIT	ION				
Well Pad		Acceptable	Not Acceptable	Explain:		520	ayed b	see 5	pray
Protective Cas	sing	Acceptable	Not Acceptable	Explain:		٤	ayed b	11 00	B
Vell Casing		Acceptable	Not Acceptable	Explain:	Non-exist		-		V.
ocking Cap		Acceptable	Not Acceptable)	404-571	- 6.1			
Vell Label (ou	·	Acceptable	Not Acceptable	Explain:					
Vell Label (in:	side)	Acceptable	Not Acceptable	Explain:					
-Plug		Acceptable	Not Acceptable	Explain: PURGE METH	OD				
ate: 0914	819	Time: 104	0	Method:	Law flow				
otal Well De		= 29.6	9		_				
epth to Wate	er (ft):	= 4.50							
Vater Column	(ft):	= 25-19	Ì						
omments:				1 volume					
	\overline{A}			OBSERVATIO					
dor:	Mone , L	ow , High	, H ₂ S , Fuel	Like , Other	•				
omments:									
omments:			F15						
comments:	Volume	Pate	FIE	ELD PARAMET		Specific	Temp	Tunkisis	Don'th to water
	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance (mS/cmc)	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
ime	(gal)	(mL/min)	pH (s.u.) +/- 0.1 s,u,	DO (mg/L) +/- 10%	ORP (mV) +/- 10 mV	Conductance (mS/cmc) +/- 3%	(°C) +/- 3%	(NTU) <10 NTU	(feet)
ime	(gal) 	(mL/min)	pH (s.u.) +/- 0.1 s,u,	DO (mg/L) +/-10%	ORP (mV) +/- 10 mV - 63 - 9	Conductance (mS/cmc) +/- 3%	(°C) +/- 3% (6.38	(NTU) <10 NTU 33. B	(feet) 6.54
1047 1052	(gal) - 13 0,9	(mL/min) -240	pH (s.u.) +1-0.1 s,u, 6-50	DO (mg/L) +/-10% 0.41	ORP (mV) +/- 10 mV - 63-9	Conductance (mS/cmc) +/- 3% (6 · 377	(°C) +1-3% 16.38	(NTU) <10 NTU \$3.8	(feet) 6.54 6.82
1047 1052 1057	(gal) 	(mL/min) 	pH (s.u.) +/- 0.1 s,u, 6.50 6.48	DO (mg/L) +/-10% 0.41 0.36	ORP (mV) +/- 10 mV - 63 9 - 68 1	Conductance (mS/cmc) +/- 3%	(°C) +/- 3% (6.38	(NTU) <10 NTU 33.8 19 7- Z	6.54 6.82
1047 1052 1057	(gal) - 13 0,9	(mL/min) -240	pH (s.u.) +1-0.1 s,u, 6-50	DO (mg/L) +/-10% 0.41	ORP (mV) +/- 10 mV - 63-9	Conductance (mS/cmc) +/- 3% (6 · 377	(°C) +1-3% 16.38	(NTU) <10 NTU \$3.8	6.54 6.82
1047 1052 1057	(gal) 0.9 7.7	(mL/min) 	pH (s.u.) +/- 0.1 s,u, 6.50 6.48	DO (mg/L) +/-10% 0.41 0.36	ORP (mV) +/- 10 mV - 63 -9 - 68 1 - 71 - 8	Conductance (mS/cmc) +/- 3% 6 - 377 5 - 406 5 454	(°C) +1-3% (6.38) 16.23	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89
1047 1052 1057 1102	(gal) 13 0.9 7.7	(mL/min)	pH (s.u.) +/- 0.1 s,u, 6.50 6.48 6.47	DO (mg/L) +/-10% 0.41 0.36 0.74	ORP (mV) +/- 10 mV - 63 9 - 68 1	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89
1047 1052 1057 1102	(gal) 13 0.9 7.7	(mL/min)	pH (s.u.) +/- 0.1 s,u, 6.50 6.48 6.47	DO (mg/L) +/-10% 0.41 0.36 0.74	ORP (mV) +/- 10 mV - 63 -9 - 68 1 - 71 - 8	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89
1047 1052 1057 1102	(gal) 13 0.9 7.7	(mL/min)	pH (s.u.) +/- 0.1 s,u, 6.50 6.48 6.47	DO (mg/L) +/-10% 0.41 0.36 0.74	ORP (mV) +/- 10 mV - 63 -9 - 68 1 - 71 - 8	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89
1047 1052 1057 1102	(gal) 13 0.9 7.7	(mL/min)	pH (s.u.) +/- 0.1 s,u, 6.50 6.48 6.47	DO (mg/L) +/-10% 0.41 0.36 0.74	ORP (mV) +/- 10 mV - 63 -9 - 68 1 - 71 - 8	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89
1047 1052 1057 1102	(gal) 13 0.9 7.7	(mL/min)	pH (s.u.) +/- 0.1 s,u, 6.50 6.48 6.47	DO (mg/L) +/-10% 0.41 0.36 0.74	ORP (mV) +/- 10 mV - 63 -9 - 68 1 - 71 - 8	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89
1047 1052 1057 1102	(gal) 13 0.9 7.7	(mL/min)	pH (s.u.) +/- 0.1 s,u, 6.50 6.48 6.47	DO (mg/L) +/-10% 0.41 0.36 0.74	ORP (mV) +/- 10 mV - 63 -9 - 68 1 - 71 - 8	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	(feet) 6.54 6.82
1047 1052 1057 1102	(gal) 13 0.9 7.7	(mL/min)	pH (s.u.) +/- 0.1 s,u, 6.50 6.48 6.47	DO (mg/L) +/-10% 0.41 0.36 0.74	ORP (mV) +/- 10 mV - 63 -9 - 68 1 - 71 - 8	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89
1047 1052 1057 1102	(gal) 13 0.9 7.7	(mL/min)	pH (s.u.) +/- 0.1 s,u, 6.50 6.48 6.47	DO (mg/L) +/-10% 0.41 0.36 0.74	ORP (mV) +/- 10 mV - 63 -9 - 68 1 - 71 - 8	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89
1047 1052 1057 1102	(gal) 13 0.9 7.7	(mL/min)	pH (s.u.) +1-0.1 s,u, 6.50 6.48 6.47 6.47	DO (mg/L) +/-10% O.41 O.36 O.74 O.72 O.70	ORP (mV) +1-10 mV -63-9 -68.1 -71.8 -73.8 -74.8	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89
1047 1052 1057 1102	(gal) 1.3 0.9 7.7 1.0 1.8	(mL/min)	pH (s.u.) +1-0.1 s,u, 6.50 6.48 6.47 6.47	DO (mg/L) +1/10% O.41 O.36 O.74 O.72 O.70	ORP (mV) +1-10 mV -63-9 -68.1 -71.8 -73.8 -74.8	Conductance (mS/cmc) +/- 3% 6 · 377 5 · 40 (5 · 454 5 · 517	(°C) +1-3% (6.38) 16.23 16.06	(NTU) <10 NTU 33.8 19 7-2 6.5	6.54 6.82 7.29 6.89

Duplicate Sample ID: PIA

Q.C. Sample Type: NIA

Q.C. Parameters: NA

Trash picked up?
SIGNED/SAMPLER:

MS/MSD

Duplicate

Well locked?
Mat/1

Monitoring Well Floid Data Shoot - OMC Groundwater Site Wall Number: MV-6215 Purpose of Sampling: OMC Quarterly Sampling Field Craw! 3G, MG Field Conditions: 75 F Sunny
WELL CONDITION OMC Sno: Tubing was getting raught C approx 5.5 ft bloc The water level meter neede it past but the tubing needed to be forced down Wall Pad Not Acceptable Acceptogie Not Acceptable Explain: Protective Casing Wall Casing Acceptes Not Actopiable Express: ALE O DIO DIO Engrann: Locking Cop Not Asceptable Acceptable Well Label (outside) Possible Wised broken off from Acceptable Not Assessed Explain: Well Label (Ineide) J-Piug Screen. 100 0014 00 Net Asseptante Express; **PURGE METHOD** Machadi Low How Date: 9/18/19 Time: 1038 - 10.90 Total Well Depth (rt) -440 Depth to Water (n): Weter Column (n): -6.50 1 values Comments: **OBSERVATIONS** H2S . Fuel Like . Other: Commente: FIELD PARAMETERS Spealte Turbialty (NTU) DO ORP Depth to wate Time μ (mg/L) Conquetoneo (mS/ama) (mUmin) (mV) (°C) *f*- 0.1 +/- 10% H- 10 mV 1-3% +/- 3% <10 NTU 1440 PUR 7.83 -148.5 19-32 70.0 5.16 1145 03 250 0.59 2.653 20.7 200 19.26 5.13 1150 7.47 0.17 -132.0 2.357 0.6 2213 9.03 19.19 3,15 7.28 -128,1 1155 1.0 250 0.15 5792 5.16 2.127 1.3 250 7.20 19:17 1200 0.11 -106.2 2,092 1205 7:16 4,70 5.15 -116.3 19,05 250 0.19 1,6 4.14 5.15 1210 250 7.14 0-19 -116.6 2.070 19.02 19.04 5.16 7.13 -120.5 3.96 1215 2.3 2.034 250 0.18 5 AMPLE 1220 SAMPLING Time: 1220 Dave: 9/18/19 Method of Sample Collection C75 Sample ID: OMC-MW-CZIS Analytical Paramaters: VOCs TOG CF Duplicate Duplicate Sample ID: OMC-HW-GZIS-R Q MS/MSD Q.C. Sample Type: Q.C. Parameters: VOCI, TOC, CI Tresh picked up? SIGNED/SAMPLER:

Monitoring Well

Page 1 0 2

Field Data Sheet - OMC Groundwater Site Field Crew: RK/KM Well Number: \$ MW-6250 Purpose of Sampling: **OMC Quarterly Sampling** Field Conditions: Site: WELL CONDITION Well Pad Acceptable Not Acceptable Explain: Acceptable **Protective Casing** Explain: Not Acceptable Well Casing Acceptable Not Acceptable Explain: Locking Cap Acceptable Not Acceptable Explain: Acceptable Well Label (outside) Not Acceptable Explain: Well Label (inside) Acceptable Not Acceptable Explain: J-Plug Acceptable Not Acceptable Explain: **PURGE METHOD** Low flow Time: 0830 Date: 9/18/19 Method: 30.00 Total Well Depth (ft) = 3.18 Depth to Water (ft): = 2682 Water Column (ft): 1 volume Comments: **OBSERVATIONS** Odor: High , H2S Fuel Like , Other: Comments:

	-02	10.7	FI	ELD PARAME	TERS	45-33-32	-56	ek-	M7.7
Time	Volume (gal)	Rate (mL/min)	pH (s.u.) +/- 0.1 s,u,	DO (mg/L) +/- 10%	ORP (mV) +/- 10 mV	Specific Conductance (mS/cmc) +/- 3%	Temp (°C) +/- 3%	Turbidity (NTU) <10 NTU	Depth to water (feet)
0840		300	6.99	1.78	219.4	5.423	15-60	1.6	3.50
2845		300	7.86	1.00	200.8	5.326	15.40	0.6	3.50
0850		300	8.39	0.37	189.6	5.254	15-34	0.0	3.50
0855		300	8.61	0.27	174.6	5.235	15.28	0.0	3.50
0900		300	8.70	0:22	148.9	5.224	15.25	0.0	3.50
0905		300	8-72	0.19	121.6	5.204	15.11	0.0	3:50
0910		300	8.73	0.18	88.1	5.182	14.99	0.0	3.50
0915		300	8.74	0.15	40.1	5.216	15.14	0.0	3.50
0920		300	8.75	0.16	13.5	5.238	15.48	0.0	3.50
0925		300	8.75	0:15	-14:2	5-265	15.66	0.0	3.5
0930		300	8-77	0.15	- 60.0	5.296	15.91	0.0	3.5
0935		300	8.76	0.15	- 93.4	5.314	15:98	0.0	3.5

Date: 9/18/19 Time: 1005
Sample ID: 0mC-MW625D Method of Sample Collection: 6mb

Analytical Parameters: VOC, TOC, &C

Q.C. Sample Type: NA MS/MSD Duplicate Duplicate Sample ID: NA

Q.C. Parameters: N/A

Trash picked up? Well locked?

SIGNED/SAMPLER:

Monitoring Well

Page 2 of 2

		N 804 1867	Fiel	d Data Sheet	OMC Groundwate	er Site			-
Well Number:	MW	6250	Field Crew:	RKICA	n	Purpose of Sam	pling:	OMC Qua	arterly Sampling
Site:	OMC		Field Conditions	:					
				WELL CONDIT	78	,	- 1	-	- 53
Well Pad		Acceptable	Not Acceptable	Explain:	ped us	loose			
Protective Cas	sing	Acceptable	Not Acceptable	Explain.	See	Poge 1			
Well Casing		cceptable	Not Acceptable	Explain:					
Locking Cap		Acceptable	Not Acceptable	Explain:					
Well Label (or	utside)	Acceptable	Not Acceptable	Explain:					
Well Label (in:	side)	cceptable	Not Acceptable	Explain:					
J-Plug		Acceptable	Not Acceptable	Explain: PURGE METH	100				
Date: 9//	8/19	Time: 08		Method:	low flo	2-1			
Total Well De	pth (ft)	= 30.	0/301	_	000				
Depth to Wate	88	= 3.18	0 (30.						
Water Column		=							
Comments	100			1 volume					
Comments									
	us-			OBSERVATIO	NS			_	-
Odor:	None , I	ow High	, H₃S , Fuel	Like , Other:	· · · · · ·			_	
Comments:									
		76 Carrier 17 17	Fi	ELD PARAME	TERS		or unmer-s	A15.	
Yime	Volume (gal)	Rate (mL/min)	pH (s.u.)	DO (mg/L)	ORP (mV)	Specific Conductance	Temp (°C)	Turbidity (NTU)	Depth to water (feet)
			+/- 0.1 s.u,	+/- 10%	+/- 10 mV	(mS/cmc) +/- 3%	+/- 3%	<10 NTU	
0940		300	8.76	0.15	-129.3	5.329	16.15	0.0	3.5
0945		300	8.75	0.14	156.3	5.340	16.13	0:0	3.5
0950		300	8.74	0.14	-1700	5.330	16.10	0.0	3.5
0955	W	300	8.74	0.111	-172.9	5.330	16.02	0.0	3.5
1000	NG	300	8.74	0.13	-179.5	-	15.98	0.0	3.5
1000	1	1	374	7.5	-114.5	517	10 /8	0.0	2.7
-	 	+					 	-	-
	+	-			-		-		
	-	-						-	<u> </u>
		ļ					ļ	<u> </u>	2
	4								
				SAMPLING				-	
Date: 9/1	8/19				05			10.53	
		nw 625	0	/		Grab			
Analytical Para		.,000	-						
		Memen	Dunlingto	Duplicate Se-	inle ID:				
Q.C. Sample T		MS/MSD	Duplicate	Duplicate Sarr	טו פוקו:				
Q.C. Paramete				V					
Trash picked up			Well locked?						
SIGNED/SAMP	LER								

Field Data Sheet - OMC Groundwater Site Well Number: MW-6255 Field Crew: KMa Purpose of Sampling: **OMC Quarterly Sampling** Field Conditions: 750F Sunny Site: WELL CONDITION Explain: Upheaving Well just mundaded w/ 0.5-1' of standing water Well Pad Acceptable) No Acceptable **Protective Casing** (Acceptable) Not Acceptable Explain Acceptable Well Casing Explain: Not Acceptable **Locking Cap** cceptable Not Acceptable Explain: Well Label (outside) cceptable Explain: Not Acceptable Well Label (inside) ceptable Not Acceptable Explain: J-Plug oceptable Explain Not Acceptable **PURGE METHOD** Date: 9/18/19 0840 Method: ow flow Total Well Depth (ft) 11.64 2.62 Depth to Water (ft): 9.00 Water Column (ft): 1 volume Comments: **OBSERVATIONS** Odor: None Low High H₂S , Fuel Like , Other: Comments FIELD PARAMETERS Specific Volume Rate DO ORP Temp Turbidity Depth to water Time рΗ (s.u.) Conductance (mg/L) (mL/min) (mV) (NTU) (gal) lec) (feet) (mS/cmc) +/- 3% / 10% +/- 10 mV <10 NTU √-01su 0.593 0845 230 0.84 3.55 7.04 24.1 1906 0850 18.90 *322* 124.7 0.590 6.75 06.0 335 855 250 118.5 6 80 0.19 0.590 1899 1.62 0.29 0900 220 113.2 0.590 0.94 6.85 1274 2.68 0-16 250 7.00 0.588 0.96 8905 106.1 18.61 ଇ.ଜଣ 7.02 0.14 0.588 0910 মুক্ত 103.5 18,72 1.50 0915 102,2 0.13 0587 18.77 วรง 7.03 0.50 0920 W2.5 705 0.13 18.88 280 101.1 0.587 0925 SAMPLING Date: 9/18/19 Time: 0925 Method of Sample Collection: Sample ID: 0 MC - MW - 6255 Analytical Parameters: Duplicate Sample ID: NA Q.C. Sample Type: N/A M\$/M\$D **Duplicate** Q.C. Parameters: Trash picked up? Well locked? SIGNED/SAMPLER:

Monitoring Well Field Data Sheet - OMC Groundwater Site Well Number: MU - 626₽ Field Crew: J. Graham Purpose of Sampling: **OMC Quarterly Sampling** Field Conditions: 70 . F OLE CAST Site: OMC WELL CONDITION Well Pad Acceptable Not Acceptable Explain Protective Casing Acceptable Not Acceptable Explain Well Casing Explain: Acceptable Not Acceptable Nolock Locking Cap Acceptable Explain: Not Acceptable Well Label (outside) Acceptable Not Acceptable Explain: Acceptable Well Label (inside) Not Acceptable Explain: Acceptable J-Plug Not Acceptable Explain: **PURGE METHOD** Time: 1517 Date: 4/16/19 Method: LEW flow = 29.34 Total Well Depth (ft) = 5.37 Depth to Water (ft): Water Column (ft): = 23.9I 1 volume Comments: **OBSERVATIONS** High , H₂S , Fuel Like , Other: Odor: Milky white @ Start of purge FIELD PARAMETERS Specific ORP Rate DO Temp Turbidity Depth to water Volume Time ρН (s.u.) Conductance (mL/min) (gal) (mg/L) (mV) (°C) (NTU) (feet) (mS/cmc) +/- 0.1 s,u, +/- 10% +/- 10 mV +/- 3% <10 NTU +/- 3% 1517 STARTY 45.6 210 7.46 1.27 -110.1 15.65 1520 3.715 5-86 210 0.44 4.008 7.21 -145.7 15.41 32.6 5.86 1525 v0.5 26.75 4.378 5-87 1530 -159.3 508 76 210 7.24 0.28 7.31 -147.7 4.528 1491 5.4 5.89 1535 1.0 210 6.25 735 -139.5 0.7 1540 1.25 210 6.27 4-599 14.82 5.90 154T 7.37 -130.2 1.5 20 6.20 4.649 14.8% 04 5.86 020 4.688 210 7.39 01 1590 1.75 14.84 -132.2 5.86 1555 SAMPLING Date: 9/16/19 1575

Sample ID: OMC - MW - G26D

Method of Sample Collection: 6 ~ 5

Analytical Parameters: Vocs, Toc, cl

Q.C. Sample Type: N 14 MS/MSD

Duplicate Sample ID: WA

Q.C. Parameters:)

Well locked?

Duplicate

Trash picked up? Y SIGNED/SAMPLER:

Monitoring Well

				Monito	oring well				
					OMC Groundwate	er Site			
Well Number:	MW-6	265	Field Crew:	6156		Purpose of Samp	oling:	OMC Qua	rterly Sampling
Site:	ОМС		Field Conditions	7					
***************************************				WELL CONDIT					
Well Pad		Acceptable	Acceptable	Explain:	NA				
Protective Cas	ing	Acceptable	Not Acceptable	Explain:					
Well Casing		Acceptable	Not Acceptable	Explain	11/1				
Locking Cap		Acceptable	Not Acceptable	Explain:	N/A Non-exist	L			
Well Label (out	tside)	Acceptable	(Not Acceptable)	Explain:	Non-exist	क्ष			
Well Label (ins	ide)	Acceptable	Not Acceptable	Explain:					
J-Plug		Acceptable	Not Acceptable	Explain:					
Date: 0916	14	Time:) \$	553	PURGE METH Method:	Law flow	<u>.</u>			
Total Well Dep	-	= 12-5		(11011100)	tas pro-				
Depth to Water									
Water Column		= 5.25	7 0						
	(·V·	- (*	-	1 volume					
Comments:				1 VOIGILIE					
				OBSERVATIO	MC				
Odor: /	None), Lo	ow , High		Like , Other:					
		on , ingir	, 1120 , 1401	Line , Other.					
Comments:									
			FI	ELD PARAME	TERS				
Time	Volume	Rate		DO	ORP	Specific Conductance	Temp	Turbidity	Depth to water
rime	(gal)	(mL/min)		(mg/L)	(mV)	(mS/cmc)	(°C)	(NTU)	(feet)
1555	1.5	200	7.39	#/- 10% 6-85	+/- 10 mV -89 -8	2-473	17.38	6.00	5.25
	2.8		7.26			+	<u> </u>	_	5.25
1600	!	rw		6.31	-112-6	7.374	17.38		
1608	3.2	200	7.22	0.71	-117.9	2.374	17.39	0.00	5.25
1610	3.8	re	7.21	0.18	-106	2.367	17-40	0.00	5.25
1615	4.2	200	7.20	0.18	-115.2	2.367	17.39	0.00	5.75
							}		
									_
							<u></u>		
								11	
	l			SAMPLING				27	_
Date: 6916	,19			Time: 16		_			
	-	1112- 126	4	-	mple Collection:				
	07.62	1W-626	ic, Chbri	Netition of Sat	npie Collection;	Grab			
Analytical Parai					. /.				
Q.C. Sample Ty	A/N :edd	MS/MSD	Duplicate	Duplicate San	nple ID: P/A				
Q.C. Parametei	rs: N/A								
Trash picked up			Well locked?						
SIGNED/SAMP	LER:	9/	11.11						
			tarl-	M					

Attachment 2 Data Usability Evaluation

Data Usability Evaluation—September 2019 OMC Plant 2 Site (OU4), Waukegan, Illinois WA No. 237-RARA-0528, Contract No. EP-S5-06-01

PREPARED FOR: U.S. Environmental Protection Agency

PREPARED BY: Nichole Boyea/CH2M HILL, Inc. (CH2M)

DATE: February 3, 2020

This memorandum presents the results of the usability evaluation of groundwater data from the Outboard Marine Corporation (OMC) Plant 2 Site in Waukegan, Illinois. Groundwater samples were collected September 16 through 18, 2019, and analyzed by either the subcontract laboratory, Katahdin Analytical, or a laboratory in the U.S. Environmental Protection Agency's (EPA's) Contract Laboratory Program (CLP). The analytical results will be used to evaluate the performance of the in situ treatment of the remining high-concentration source areas and the sitewide monitored natural attenuation remedy.

- Forty-six aqueous samples, including quality assurance (QA)/quality control (QC) samples (4 field duplicates [FDs], 2 matrix spikes [MSs], 2 matrix spike duplicates [MSDs], 2 trip blanks [TBs], 1 equipment blank [EB], and 1 field blank [FB]), were analyzed for volatile organic compounds (VOCs).
- Forty-four samples were analyzed for monitored natural attenuation (MNA) parameters (chloride and total organic carbon [TOC]), including QA/QC samples (4 FDs, 2 MSDs, 1 EB, and 1 FB).

Table 1 lists the parameters, methods, and the laboratory performing the analysis.

Table 1. Analytical Parameters

Data Usability Evaluation—September 2019

OMC Plant 2 Site (OU4), Waukegan, Illinois

Parameter Class	Method	Laboratory Type	Laboratory
VOCs	CLP SOW SOM02.4	CLP Laboratory	ALS Laboratory Group Salt Lake City, UT
Chloride	EPA 300.0	Subcontract Laboratory	Katahdin Analytical Services
TOC	SW846 9060	Subcontract Laboratory	Scarborough, Maine

As part of the QA process outlined in the site-specific quality assurance project plan (QAPP) (CH2M 2013), QAPP Addendum II (CH2M 2017), and QAPP Addendum III (CH2M 2019), QC samples were collected in the field to complement the assessment of overall data quality and usability. The QC samples consisted of FDs, aliquots for laboratory MS/MSD, FB, EB, and VOC TB samples. Table 2 presents the sample delivery groups (SDGs), sample identifications (IDs), and station locations.

Table 2. Sample Delivery Groups
Data Usability Evaluation—September 2019
OMC Plant 2 Site (OU4), Waukegan, Illinois

	CLP	Laboratory	Subcontr	Subcontract Laboratory			
Station Location	Sample ID VOC SDG		Sample ID	MNA ¹ SDG			
OMC-MW-600D	ETFA2	ETFB5	19CW03-01	SM9819			
OMC-MW-600S	ETFA3	ETFB5	19CW03-02	SM9819			
OMC-MW-601D	ETFA4	ETFA4	19CW03-03	SM9753			
OMC-MW-601S	ETFA5	ETFA4	19CW03-04	SM9753			
OMC-MW-602D	ETFA6	ETFA4	19CW03-05	SM9753			
OMC-MW-602D-R	ETFA7	ETFA4	19CW03-06	SM9753			
OMC-MW-602S	ETFA8	ETFA4	19CW03-07	SM9753			
OMC-MW-603D	ETFA9	ETFA4	19CW03-08	SM9753			
OMC-MW-603S	ETFB0	ETFA4	19CW03-09	SM9753			
OMC-MW-604D	ETFB1	ETFA4	19CW03-10	SM9753			
OMC-MW-604S	ETFB2	ETFA4	19CW03-11	SM9753			
OMC-MW-605D	ETFB3	ETFA4	19CW03-12	SM9753			
OMC-MW-605D-R	ETFB4	ETFA4	19CW03-13	SM9753			
OMC-MW-605S	ETFB5	ETFB5	19CW03-14	SM9753			
OMC-MW-606D	ETFB6	ETFA4	19CW03-15	SM9753			
OMC-MW-606S	ETFB7	ETFA4	19CW03-16	SM9753			
OMC-MW-607D	ETFB8	ETFA4	19CW03-17	SM9753			
OMC-MW-607S	ETFB9	ETFA4	19CW03-18	SM9753			
OMC-MW-612D	ETFC0	ETFB5	19CW03-19	SM9819			
OMC-MW-612S	ETFC1	ETFB5	19CW03-20	SM9819			
OMC-MW-612S-R	ETFC2	ETFB5	19CW03-21	SM9819			
OMC-MW-613D	ETFC3	ETFB5	19CW03-22	SM9819			
OMC-MW-613S	ETFC4	ETFB5	19CW03-23	SM9819			
OMC-MW-614D	ETFC5	ETFA4	19CW03-24	SM9753			
OMC-MW-614S	ETFC6	ETFA4	19CW03-25	SM9753			
OMC-MW-615D	ETFC7	ETFA4	19CW03-26	SM9753			
OMC-MW-615S	ETFC8	ETFA4	19CW03-27	SM9753			
OMC-MW-619D	ETFC9	ETFA4	19CW03-28	SM9753			
OMC-MW-619S	ETFD0	ETFB5	19CW03-29	SM9753			
OMC-MW-620D	ETFD1	ETFB5	19CW03-30	SM9753			
OMC-MW-620S	ETFD2	ETFB5	19CW03-31	SM9753			

Table 2. Sample Delivery GroupsData Usability Evaluation—September 2019

OMC Plant 2 Site (OU4), Waukegan, Illinois

	CLP	Laboratory	Subcontract Laboratory		
Station Location	Sample ID	VOC SDG	Sample ID	MNA ¹ SDG	
OMC-MW-621D	ETFD3	ETFB5	19CW03-32	SM9819	
OMC-MW-621S	ETFD4	ETFB5	19CW03-33	SM9819	
OMC-MW-621S-R	ETFD5	ETFB5	19CW03-34	SM9819	
OMC-MW-625D	ETFD6	ETFB5	19CW03-35	SM9819	
OMC-MW-625S	ETFD7	ETFD7	19CW03-36	SM9819	
OMC-MW-626D	ETFD8	ETFB5	19CW03-37	SM9753	
OMC-MW-626S	ETFD9	ETFB5	19CW03-38	SM9753	
OMC-EB091719	ETFE0	ETFB5	19CW03-39	SM9753	
OMC-FB091719	ETFE1	ETFB5	19CW03-40	SM9753	
OMC-TB091719	ETFE3	ETFB5	-	-	
OMC-TB091819	ETFE2	ETFD7	-	-	

¹ MNA includes chloride and total organic carbon (TOC)

Subcontract Laboratory Data

Chloride and TOC were analyzed by Katahdin Analytical and reported in SDGs SM9753 and SM9819. CH2M performed a level III review on 100 percent of the data, which included 34 native samples (2 of which were designated as MS/MSD samples), 4 FD samples, 1 EB, and 1 FB, for a total of 40 field samples.

The data were reviewed to assess their analytical accuracy, precision, and completeness. The review was conducted in accordance with the site-specific QAPP (CH2M 2013). A forms review was conducted on 100 percent of the definitive data.

The forms review consisted of a review of the following QC items:

- Holding times and sample receipt conditions
- Required QC samples at the specified frequencies
- Laboratory control sample precision and accuracy
- MS/MSD precision and accuracy
- Blank contamination and, if any, its impact on the analytical results
- Initial calibration and continuing calibration precision and accuracy
- Laboratory and FD precision
- Method Reporting Limit check precision and accuracy

The QA/QC limits implemented during the data quality evaluation were those listed in the site-specific QAPP. Standard data qualifiers were added as a means of classifying the data as to their conformance to QA/QC requirements. The data qualifiers are defined as follows:

[J] Estimated. The analyte was below the stated reporting limit (RL), but greater than the method detection limit, or there is an analytical bias.

DATA USABILITY EVALUATION—SEPTEMBER 2019 OMC PLANT 2 SITE (OU4), WAUKEGAN, ILLINOIS WA NO. 237-RARA-0528, CONTRACT NO. EP-S5-06-01

- [J+] Biased High. The analyte was positively identified, but the associated numerical value is approximate (metals only).
- [J-] Biased Low. The analyte was positively identified, but the associated numerical value is approximate (metals only).
- [U] Undetected. The analyte was analyzed for but not detected at a concentration equal to or greater than the laboratory RL.
- [UJ] Estimated. The component was analyzed for but was not detected at a level equal to or greater than the level of detection. This flag is used when QC measurements indicate a possible low bias in the analytical data.

The analytical results were within project control limits, except where noted in the following sections. Attachment 1 lists the validator applied qualifiers.

Blank Samples

Blank samples were analyzed at required frequencies, with the following exceptions to accuracy and precision criteria:

- Method blanks were analyzed as required, and generally accuracy and precision criteria were met, with the following exceptions:
 - In SDG SM9753, TOC was detected below the RL in method blank sample WG264092-1.
 The associated samples were detected above the RL at a concentration greater than 5 times the blank, and no qualification was required.
 - In SDG SM9753, TOC was detected below the RL in method blank sample WG264079-1.
 The associated samples were detected above the RL at a concentration greater than 5 times the blank and no qualification was required.
- The FB (19CW03-40), included in SDG SM9753 and associated with the samples collected on September 17, 2019, had detected concentrations of TOC below the RL. The associated samples were detected above the RL at concentrations exceeding 5 times the blank concentration, and no qualification was required.
- The EB (19CW03-39), included in SDG SM9753, had detected concentrations of TOC below the RL.
 The samples collected during this field event are associated with this blank, and the samples were
 detected above the RL at concentrations greater than 5 times the blank, and no qualification was
 required.

Matrix Spike/Matrix Spike Duplicate

MS/MSDs were analyzed at the appropriate frequency, and generally accuracy and precision criteria were met, with the following exceptions:

- In SDG SM9753, chloride exceeded the lower control limit for percent recovery (%R) in samples 19CW03-14 MS and MSD. Chloride was detected in parent sample 19CW03-14 and was therefore qualified as estimated "J-".
- In SDG SM9819, sample 19CW03-01 MS exceeded the lower control limit for percent recovery (%R) for chloride. Chloride was detected in parent sample 19CW03-01 and was therefore qualified as estimated "J-".

Field Duplicates

A total of 4 FD samples were collected for chloride and TOC analysis, meeting the minimum frequency of 1 per 10 field samples. FD samples were collected immediately following the parent sample and analyzed for

the same parameters. The precision criteria, a relative percent difference (RPD) of less than 30 percent, was met for the analytes and no qualification was required.

Contract Laboratory Program Data

The samples were analyzed for VOCs by a laboratory in EPA's CLP. EPA's Environmental Service Assistance Team (ESAT) contractor, TechLaw, reviewed the data set from the laboratory to assess the accuracy and precision of the method and the matrix using criteria established in the National Functional Guidelines (EPA 2017) (NFG) and verified that the data set was complete. ESAT validators also added data qualifiers when the QC statistics indicated a possible bias to specific compounds or analytes associated with a particular method and sample batch.

Standard data qualifiers are a means to classify the data with regard to their conformance to QC requirements. The applied data qualifiers are defined as follows:

- [U] The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- [J] The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- [J+] The result is an estimated quantity; the results may be biased high.
- [J-] The result is an estimated quantity; the results may be biased low.
- [UJ] The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the action limit of quantitation necessary to accurately and to precisely measure the analyte in the sample.
- [R] The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

CH2M reviewed the validation performed by Techlaw for the groundwater samples in Case Number 48482; SDG numbers ETFA4, ETFB5, and ETFD7. The VOC data set includes 34 native samples (of which 2 were designated MS/MSD samples), 4 FD samples, 1 FB, and 1 EB, and 2 TBs for a total of 42 field samples.

The EPA validation case narrative worksheets indicate that some sample results should be qualified as estimated based on the applicable QC statistics or other National Functional Guidelines requirements. Attachment 1 lists the CH2M validator applied qualifiers. Attachment 2 contains the ESAT narratives and worksheets.

Validation of Field Quality Control Samples

EPA's ESAT validators, Techlaw, reviewed field QC samples, including field and EB samples, and FDs, but did not qualify results. CH2M validators reviewed the aforementioned field QC samples and VOC TB samples in accordance with the QAPP. QC criteria were generally met, except where outlined in the following section:

Blanks

Blank samples were analyzed at required frequencies, including 1 EB, 1 FB, and 2 TBs. Exceptions to accuracy and precision criteria are outlined below.

- In TB ETFE2 (reported in SDG ETFD7), toluene was detected below the RL. This TB is associated with the samples shipped September 18, 2019. Associated samples in SDG ETFB5 include ETFA2, ETFA3, ETFC0, ETFC1, ETFC2, ETFC3, ETFC4, ETFD3, ETFD4, ETFD5, and ETFD6. The samples in SDG ETFD7 are associated with this blank.
 - In SDG ETFB5, toluene was detected below the RL in samples ETFA2, ETFA3, ETFC0, ETFC2, ETFD3, ETFD4, and ETFD5. These samples were qualified nondetect "U" and reported at the RL, per NFG

criteria. The other associated samples in this SDG were nondetect for toluene and required no qualification.

- In SDG ETFD7, the associated samples were nondetect for toluene, and no qualification was required.
- In TB ETEF3 (reported in SDG ETFB5), acetone and toluene were detected below the RL. This TB is associated with the samples shipped September 17, 2019. The samples in SDG ETFA4 are associated with this blank. Associated samples in SDG ETFB5 include ETFE0, ETFE1, ETFE3, ETFB5, ETFD0, ETFD1, ETFD2, ETFD8, and ETFD9.
 - In SDG ETFA4, acetone in samples ETFB6 and ETFC7 were detected above the RL at a concentration exceeding 5 times the blank and required no qualification. Acetone was detected above the RL in sample ETFC5, but at a concentration less than 5 times the blank. This sample was originally qualified "U" and reported to 2 times the RL by ESAT validators due to method blank contamination. CH2M validators kept the "U" qualifier, but instead reported the result at the original concentration. The other associated samples were nondetect and required no qualification.
 - In SDG ETFA4, toluene was detected below the RL in samples ETFA4, ETFB2, ETFB6, ETFB7, ETFC5, ETFC7, and ETFC9. These samples were qualified nondetect "U" and reported to the RL per NFG criteria. The other associated samples were nondetect for toluene and required no qualification.
 - In SDG ETFB5, acetone was detected below the RL in associated samples ETFE0, ETFE1, ETFE3, ETFB5, ETFD0, and ETFD8. These results were qualified nondetect "U" and reported to the RL per NFG criteria. Acetone was detected above the RL in ETFD1, but at a concentration less than 5 times the blank. Therefore, the result was qualified nondetect "U" and reported at the original concentration. The other associated samples in this SDG were nondetect for acetone and required no qualification
 - In SDG ETFB5, toluene was detected below the RL in samples ETFE0, ETFE1, ETFE3, ETFB5, ETFD0, ETFD1, and ETFD8. These results were qualified nondetect "U" and reported to the RL, per NFG criteria. The other associated samples in this SDG were nondetect for toluene and required no qualification.
- In FB ETFE1 (reported in SDG ETFB5), acetone, toluene, m,p-xylene, and o-xylene were detected below the RL, and 2-butanone was detected above the RL. This blank is associated with the samples collected September 17, 2019. Associated samples in SDG ETFA4 include ETFA9, ETFB0, ETFB1, ETFB2, ETFB3, ETFB4, ETFB6, ETFB7, ETFB8, ETFB9, ETFC5, ETFC6, ETFC7, ETFC8, and ETFC9. Associated samples in SDG ETFB5 include ETFE0, ETFE3, ETFB5, and ETFD0. TechLaw validators qualified acetone and toluene as nondetect "U" due to contamination in TB ETFE3. However, CH2M validators used the original laboratory results for these analytes to screen associated samples for potential field blank contamination.
 - In SDG ETFA4, acetone was detected above the RL in ETFB6 and ETFC7 at a concentration greater than 5 times the blank, and no qualification was required. In ETFC5, acetone was detected above the RL, but at a concentration less than 5 times the blank; therefore, the sample was qualified nondetect "U" and reported at the original concentration. The other associated samples were nondetect for acetone and no qualification was required.
 - In SDG ETFA4, 2-butanone was detected above the RL in ETFB6 at a concentration greater than 5 times the blank and no qualification was necessary. 2-Butanone was detected above the RL in ETFC7, but as the concentration did not exceed 5 times the blank, the sample was qualified nondetect "U" and reported at the original sample concentration. 2-Butanone was detected below the RL in samples ETFA9, ETFB1, and ETFC5 and was therefore qualified as nondetect "U" and

- reported to the RL, per NFG criteria. The other associated samples in this SDG were nondetect and required no qualification.
- In SDG ETFA4, toluene was detected below the RL in samples ETFB2, ETFB6, ETFB7, ETFC5, ETFC7, and ETFC9. Samples were qualified as nondetect "U" and reported to the RL per NFG criteria. The other associated samples in this SDG were nondetect for toluene and required no qualification.
- In SDG ETFA4, m,p-xylene was detected below the RL in sample ETFB6. This sample was qualified nondetect "U" and reported to the RL per NFG criteria. The other samples in this SDG were nondetect for m,p-xylene and required no qualification.
- In SDG ETFA4, the samples were nondetect for o-xylene and no qualification was required.
- In SDG ETFB5, acetone was detected below the RL in samples ETFE0, ETFB5, ETFD0 and was therefore qualified nondetect "U" and reported to the RL per NFG criteria.
- In SDG ETFB5, 2-butanone was detected above the RL in associated sample ETFE0, but at a concentration that did not exceed 5 times the blank. This sample was originally qualified nondetect "U" by TechLaw validators for TB contamination, and the sample was reported to 2 times the blank concentration. CH2M validators kept the "U" qualifier, but instead reported the result to the original concentration. The other associated samples in the SDG were nondetect for 2-butanone and required no qualification.
- In SDG ETFB5, toluene was detected below the RL in samples ETFE0, ETFE3, ETEB5, and ETED0.
 Therefore, the associated samples were qualified nondetect "U" and reported to the RL per NFG criteria.
- In SDG ETFB5, m,p-xylene was detected below the RL in ETFE0. The sample was qualified nondetect "U" and reported to the RL per NFG criteria. The remaining associated samples in this SDG were nondetect for m,p-xylene and required no qualification.
- In SDG ETFB5, o-xylene was detected below the RL in ETFE0. The sample was qualified nondetect "U" and reported to the RL per NFG criteria. The remaining associated samples in this SDG were nondetect for o-xylene and required no qualification.
- In EB ETFEO (reported in SDG ETFB5), acetone, toluene, m,p-xylene, and o-xylene were detected below the RL, and 2-butanone was detected above the RL. This blank is associated with the samples in the data set. In blank ETFEO, TechLaw validators qualified acetone and toluene as nondetect "U" due to contamination in TB ETFE3, and qualified 2-butanone, m,p-xylene, and o-xylene as nondetect "U" due to contamination in FB ETFE1. However, CH2M validators used the original laboratory results for these analytes to screen associated samples for potential equipment blank contamination.
 - In SDG ETFA4, acetone in samples ETFB6 and ETFC7 were detected above the RL at a concentration exceeding 5 times the blank and required no qualification. Acetone was detected above the RL in sample ETFC5, but at a concentration less than 5 times the blank. This sample was originally qualified "U" and reported to 2 times the RL by ESAT validators due to method blank contamination. Per professional judgement CH2M validators kept the "U" qualifier, but instead reported the result at the original concentration. The other associated samples were nondetect and required no qualification.
 - In SDG ETFA4, 2-butanone in sample ETFB6 was detected above the RL at a concentration exceeding 5 times the blank and required no qualification. 2-Butanone was detected above the RL in sample ETFC7, but at a concentration that did not exceed 5 times the blank; therefore, this sample was qualified nondetect "U" and reported at the original concentration. Associated samples ETFA4, ETFA9, ETFB1, and ETFC5 had detected concentrations of 2-butanone below the RL and were

therefore qualified nondetect "U" and reported at the RL, per NFG criteria. The other associated samples in this SDG were nondetect for 2-butanone and required no qualification.

- In SDG ETFA4, toluene was detected below the RL in samples ETFA4, ETFB2, ETFB6, ETFB7, ETFC5, ETFC7, and ETFC9. These samples were therefore qualified nondetect "U" and reported to the RL, per NFG criteria. The other associated samples in this SDG were nondetect for toluene and required no qualification.
- In SDG ETFA4, m,p-xylene was detected below the RL in sample ETFB6, and was therefore qualified nondetect "U" and reported to the RL per NFG criteria. The other samples in this SDG were nondetect for m,p-xylene and require no qualification.
- In SDG ETFA4, o-xylene was non detect in the associated samples and no qualification was required.
- In SDG ETFB5, acetone was detected above the RL at a concentration greater than 5 times the blank in sample ETFC0; no qualification was required. Acetone was detected above the RL in samples ETFD1 and ETFD3, but at a concentration that did not exceed the 5 times the blank. Therefore, these samples were qualified as nondetect "U" and reported at the original concentration. Acetone was detected below the RL in samples ETFE1, ETFE2, ETFA2, ETFB5, ETFC1, ETFC2, ETFD0, ETFD4, ETFD5, ETFD6, and ETFD8. These samples were qualified nondetect "U" and reported at the RL, per NFG criteria. The remaining associated samples in SDG ETFB5 were nondetect for acetone and required no qualification.
- In SDG ETFB5, 2-butanone was detected above the RL in sample ETFC0 at a concentration exceeding 5 times the blank; no qualification was required. 2-Butanone was detected above the RL, but at a concentration less than 5 times the blank in samples ETFE1, ETFA2, ETFD1, and ETFD3. These samples were originally qualified nondetect "U" by TechLaw validators for TB contamination, and the sample was reported to 2 times the blank concentration. CH2M validators kept the "U" qualifier, but instead reported the result to the original concentration. The other samples in this SDG were nondetect for 2-butanone and required no qualification.
- In SDG ETFB5, toluene was detected below the RL in samples ETFE1, ETFE3, ETFA2, ETFA3, ETFB5, ETFC0, ETFC2, ETFD0, ETFD1, ETFD3, ETFD4, ETFD5, and ETFD8. These samples were qualified as nondetect "U" and reported to the RL, per NFG criteria. The other associated samples in this SDG were nondetect for toluene and required no qualification.
- In SDG ETFB5, m,p-xylene was detected below the RL in ETFE1 and ETFC0. These samples were therefore qualified as nondetect "U" and reported to the RL, per NFG criteria. The other associated samples in this SDG were nondetect for m,p-xylene and required no qualification.
- In SDG ETFB5, o-xylene was detected below the RL in sample ETFE1. Therefore, this sample was
 qualified as nondetect "U" and reported to the RL, per NFG criteria. The other associated samples in
 this SDG were nondetect for o-xylene and required no qualification.
- In SDG ETFD7, acetone was nondetect in the associated samples and no qualification was required.
- In SDG ETFD7, 2-butanone was nondetect in the associated samples and no qualification was required.
- In SDG ETFD7, toluene was detected below the RL in sample ETFE2. This sample was qualified nondetect "U" and reported to the RL per NFG criteria. All other associated samples in this SDG were nondetect for toluene and no qualification was required.
- In SDG ETFD7, m,p-xylene was nondetect in the associated samples and no qualification was required.
- In SDG ETFD7, o-xylene was nondetect in the associated samples and no qualification was required.

Field Duplicate Samples

A total of 4 FD samples were collected for VOC analysis, meeting the minimum frequency of 1 per 10 field samples. FD samples were collected immediately following the parent sample and analyzed for the same parameters. The precision criteria, an RPD of less than 30 percent, was met for all analytes, with the following exceptions:

- Acetone was detected in FD pair ETFC1 (parent) and ETFC2 (duplicate), as well as FD pair ETFD4 (parent)
 and ETFD5 (duplicate) (both pairs reported in SDG ETFB5). The RPD in both cases was above criteria, but
 as sample concentrations were detected below the RL, no qualification was required.
- Trichloroethene was detected in both parent sample ETFD4 and FD ETFD5 (both reported in SDG ETFB5).
 The RPD was above criteria, but as sample concentrations in both samples were detected below the RL, no qualification was required.
- The RPD for chloroethane and toluene exceeded RPD criteria for FD pair ETFC1 (parent) and ETFC2 (duplicate) (reported in SDG ETFB5). These analytes were nondetects in ETFC1 but were detected below the RL in ETFC2. As sample concentrations were at or below the RL, no qualification was required.

Findings

The following subsections summarize the data validation findings and usability of the final reportable results. The sample numbers and locations do not include QA/QC samples.

Volatile Organic Compound Data

The VOC data set consists of the results for 51 analytes for each of the 38 monitoring well samples, excluding QA/QC samples, for a total of 1,938 results.

The data validation summary indicates the following:

- J and U qualifiers were applied to sample results that were potentially affected by QC deficiencies.
- J qualifiers were applied to sample results that were reported between the method detection limit and the RL.
- Nondetect sample results were qualified U.
- None of the reported VOC data was rejected.

Though the evaluation of blanks and other QA/QC data indicates possible estimate values, the accuracy and precision are generally acceptable, and the data set completeness is deemed as 100 percent usable and may be used in the project decision-making process with qualification.

Chloride Data

The chloride data set consists of 1 result for each of the 38 monitoring well samples, excluding QA/QC samples. The validation summary of the chloride data indicates the following:

- J- qualifiers were applied to sample results that were potentially affected by QC deficiencies.
- J qualifiers were applied to sample results that were reported between the method detection limit and the RL.
- Nondetected sample results were qualified U.
- None of the reported chloride data was rejected.

For chloride, 100 percent of the data, as qualified, can be used to make project decisions.

DATA USABILITY EVALUATION—SEPTEMBER 2019 OMC PLANT 2 SITE (OU4), WAUKEGAN, ILLINOIS WA NO. 237-RARA-0528, CONTRACT NO. EP-S5-06-01

Total Organic Carbon Data

TOC data set consists of 1 TOC result for 38 monitoring well samples, excluding QA/QC samples. The validation summary of the TOC data indicates the following:

- There was no indication of QA/QC deficiencies and no additional qualification was needed.
- J qualifiers were applied to sample results that were reported between the method detection limit and the RL.
- Nondetected sample results were qualified U.
- None of the reported TOC results were rejected.

For TOC, 100 percent of the data, as qualified, can be used to make project decisions.

Overall Assessment

The final activity in the data quality evaluation is an assessment of whether the data meet the data quality objectives. The goal of the assessment was to demonstrate that a sufficient number of representative samples were collected, and the resulting analytical data can be used to support the decision-making process. The following summary highlights the data evaluation findings for the above-defined events:

• The precision and accuracy of the data, as measured by field and laboratory QC indicators, indicate that the data quality objectives were met.

The completeness objective of 90 percent was met for all method/analyte combinations.

References

CH2M HILL (CH2M). 2013. *Quality Assurance Project Plan, Revision 2, OMC Plant 2 Site, Waukegan, Illinois.* WA No. 105-RARA-0528, Contract No. EP-S5-06-01. March.

CH2M HILL (CH2M). 2017. Quality Assurance Project Plan Addendum II Letter, OMC Plant 2 Site, Waukegan, Illinois. WA No. 237-RARA-528, Contract No. EP-S5-06-01. October.

CH2M Hill (CH2M). 2019. Quality Assurance Project Plan Addendum III Letter, OMC Plant 2 Site, Waukegan, Illinois. WA No. 237-RARA-528, Contract No. EP-S5-06-01. February.

U.S. Environmental Protection Agency (EPA). 2016. *National Functional Guidelines for Superfund Organic Methods Data Review*. EPA-540-R-2016-002. September.

Attachment 1 Qualification Summary

						Laboratory		CH2M Validator		
Sample Name	Sample ID	SDG	CAS#	Analyte	Initial Result	Qualification	Final Result	Qualification	Unit	Reason Code
OMC-MW-600D	ETFA2	ETFB5	78-93-3	2-Butanone	22	U	11	U	ug/L	EB
OMC-MW-600D	ETFA2	ETFB5	67-64-1	Acetone	7	J	10	U	ug/L	EB
OMC-MW-600D	19CW03-01	SM9819	16887-00-6	Chloride	280		280	J-	mg/L	MS <lcl< td=""></lcl<>
OMC-MW-600D	ETFA2	ETFB5	108-88-3	Toluene	0.18	J	5	U	ug/L	TB, EB
OMC-MW-600S	ETFA3	ETFB5	108-88-3	Toluene	0.25	J	5	U	ug/L	TB, EB
OMC-MW-601D	ETFA4	ETFA4	78-93-3	2-Butanone	2.7	J	10	U	ug/L	EB
OMC-MW-601D	ETFA4	ETFA4	108-88-3	Toluene	0.17	J	5	U	ug/L	TB, EB
OMC-MW-603D	ETFA9	ETFA4	78-93-3	2-Butanone	32	J	50	U	ug/L	EB, FB
OMC-MW-604D	ETFB1	ETFA4	78-93-3	2-Butanone	110	J	250	U	ug/L	EB, FB
OMC-MW-604S	ETFB2	ETFA4	108-88-3	Toluene	0.23	J	5	U	ug/L	EB, FB, TB
OMC-MW-605S	ETFB5	ETFB5	67-64-1	Acetone	4.4	J	10	U	ug/L	EB, FB, TB
OMC-MW-605S	19CW03-14	SM9753	16887-00-6	Chloride	24		24	J-	mg/L	MS/MSD <lcl< td=""></lcl<>
OMC-MW-605S	ETFB5	ETFB5	108-88-3	Toluene	0.18	J	5	U	ug/L	EB, FB, TB
OMC-MW-606D	ETFB6	ETFA4	179601-23-1	m,p-Xylene	0.15	J	5	U	ug/L	EB, FB
OMC-MW-606D	ETFB6	ETFA4	108-88-3	Toluene	0.17	J	5	U	ug/L	EB, FB, TB
OMC-MW-606S	ETFB7	ETFA4	108-88-3	Toluene	0.15	J	5	U	ug/L	EB, FB, TB
OMC-MW-612D	ETFC0	ETFB5	179601-23-1	m,p-Xylene	0.3	J	5	U	ug/L	EB
OMC-MW-612D	ETFC0	ETFB5	108-88-3	Toluene	0.48	J	5	U	ug/L	EB, TB
OMC-MW-612S	ETFC1	ETFB5	67-64-1	Acetone	3.4	J	10	U	ug/L	EB
OMC-MW-612S-R	ETFC2	ETFB5	67-64-1	Acetone	6.1	J	10	U	ug/L	EB
OMC-MW-612S-R	ETFC2	ETFB5	108-88-3	Toluene	0.2	J	5	U	ug/L	EB, TB
OMC-MW-614D	ETFC5	ETFA4	78-93-3	2-Butanone	2.2	J	10	U	ug/L	EB, FB
OMC-MW-614D	ETFC5	ETFA4	67-64-1	Acetone	20	U	12	U	ug/L	EB, FB, TB
OMC-MW-614D	ETFC5	ETFA4	108-88-3	Toluene	0.57	J	5	U	ug/L	EB, FB, TB
OMC-MW-615D	ETFC7	ETFA4	78-93-3	2-Butanone	27		27	U	ug/L	EB, FB
OMC-MW-615D	ETFC7	ETFA4	108-88-3	Toluene	0.27	J	5	U	ug/L	EB, FB, TB
OMC-MW-619D	ETFC9	ETFA4	108-88-3	Toluene	0.29	J	5	U	ug/L	EB, FB, TB
OMC-MW-619S	ETFD0	ETFB5	67-64-1	Acetone	5	J	10	U	ug/L	EB, FB, TB
OMC-MW-619S	ETFD0	ETFB5	108-88-3	Toluene	0.27	J	5	U	ug/L	EB, FB, TB
OMC-MW-620D	ETFD1	ETFB5	78-93-3	2-Butanone	22	U	19	U	ug/L	EB
OMC-MW-620D	ETFD1	ETFB5	67-64-1	Acetone	17		17	U	ug/L	EB, TB
OMC-MW-620D	ETFD1	ETFB5	108-88-3	Toluene	0.23	J	5	U	ug/L	EB, TB
OMC-MW-621D	ETFD3	ETFB5	78-93-3	2-Butanone	22	U	14	U	ug/L	EB
OMC-MW-621D	ETFD3	ETFB5	67-64-1	Acetone	14		10	U	ug/L	EB
OMC-MW-621D	ETFD3	ETFB5	108-88-3	Toluene	0.24	J	5	U	ug/L	EB, TB
OMC-MW-621S	ETFD4	ETFB5	67-64-1	Acetone	9.1	J	10	U	ug/L	EB
OMC-MW-621S	ETFD4	ETFB5	108-88-3	Toluene	0.17	J	5	U	ug/L	EB, TB
OMC-MW-621S-R	ETFD5	ETFB5	67-64-1	Acetone	5.4	J	10	U	ug/L	EB
OMC-MW-621S-R	ETFD5	ETFB5	108-88-3	Toluene	0.17	J	5	U	ug/L	EB, TB
OMC-MW-625D	ETFD6	ETFB5	67-64-1	Acetone	8.2	J	20	U	ug/L	EB
OMC-MW-626D	ETFD8	ETFB5	67-64-1	Acetone	7.6	J	10	U	ug/L	EB, TB
OMC-MW-626D	ETFD8	ETFB5	108-88-3	Toluene	0.25	J	5	U	ug/L	EB, TB
OMC-TB-091719	ETFE3	ETFB5	67-64-1	Acetone	4	J	10	U	ug/L	EB, FB, TB
OMC-TB-091719	ETFE3	ETFB5	108-88-3	Toluene	0.25	J	5	U	ug/L	EB, FB, TB
OMC-TB-091819	ETFE2	ETFD7	108-88-3	Toluene	0.38	J	5	U	ug/L	EB
OMC-EB091719	ETFE0	ETFB5	78-93-3	2-Butanone	22	U	12	U	ug/L	FB
OMC-EB091719	ETFE0	ETFB5	67-64-1	Acetone	6.2	J	10	U	ug/L	FB, TB
OMC-EB091719	ETFEO	ETFB5	179601-23-1	m,p-Xylene	0.52	J	5	U	ug/L	FB
OMC-EB091719	ETFEO	ETFB5	95-47-6	o-Xylene	0.27	J	5	U	ug/L	FB
OMC-EB091719	ETFEO	ETFB5	108-88-3	Toluene	2.7	J	5	U	ug/L	FB, TB
OMC-FB091719	ETFE1	ETFB5	78-93-3	2-Butanone	11		11	U	ug/L	EB
OMC-FB091719	ETFE1	ETFB5	67-64-1	Acetone	7.4	J	10	U	ug/L	EB, TB
OMC-FB091719	ETFE1	ETFB5	179601-23-1	m,p-Xylene	0.52	J	5	U	ug/L	EB
OMC-FB091719	ETFE1	ETFB5	95-47-6	o-Xylene	0.28	J	5	U	ug/L	EB
OMC-FB091719	ETFE1	ETFB5	108-88-3	Toluene	2.6	J	5	U	ug/L	EB, TB

Definitions

ug/L = micrograms per liter; mg/L = milligrams per liter; U = nondetect; J = estimated; J- = estimated biased low Reason Code Definitions:

MS/MSD<LCL = Matrix spike and/or Matrix spike duplicate recovery falls below LCL

 ${\it EB}={\it equipment blank contamination; FB}={\it field blank contamination; TB}={\it trip blank contamination}$

Attachment 2 ESAT Validation Narratives

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V SUPERFUND DIVISION

DATE:					
SUBJECT:	Review of Data Received for Review on: October 7, 2019				
FROM:	Timothy Prendiville, Supervisor (SR-6J) Science and Quality Assurance Section				
TO:	Data User: <u>Jacobs</u> Email address: <u>kaitlin.ma@jacobs.com</u>				
We have revie	d Manual Validation for Region 5 ewed the data for the following case:				
Site Name: O	utboard Marine Corp. (IL)				
Case No: <u>48482</u> MA No: <u>N/A</u> SDG No: <u>ETFA4</u>					
Number and T	Sype of Samples: 20 waters (low/medium level volatiles)				
Sample Numb	ers: <u>ETFA4 – ETFA9, ETFB0 – ETFB4, ETFB6 – ETFB9, ETFC5 – ETFC9</u>				
Laboratory: <u>A</u>	ALS Laboratory Group Hrs for Review:				
Following are	our findings:				

CC: Howard Pham

Region 5 ESAT Contracting Officer's Representative

Mail Code: SA-5J

Page 2 of 8
Case No: 48482
Site Name: Outboard Marine Corp. (IL)
Site Name: Outboard Marine Corp. (IL)
Spage 2 of 8
SDG No: ETFA4
Laboratory: ALS

Below is a summary of the out-of-control audits and the possible effects on the data for this case:

Twenty (20) preserved water samples labeled ETFA4 – ETFA9, ETFB0 – ETFB4, ETFB6 – ETFB9 and ETFC5 – ETFC9, were shipped to ALS Environmental located in Salt Lake City, UT. All samples were collected on September 16th and 17th, 2019. All samples were received intact and properly cooled on September 18th, 2019.

All samples were analyzed for the low/medium level volatile target analytes according to CLP SOW SOM02.4 (10/2016). The data package was reviewed according to the January 2017 NFG for SOM02.4 (EPA-540-R-2017-002) and the Region 5 ESAT Organic CLP Validation SOP.

Sample ETFB0 was designated by the samplers to be used for laboratory QC, i.e. MS/MSD analyses.

No sample was identified as field blanks or trip blanks. Samples ETFA6/ETFA7 and ETFB3/ETFB4 were identified as field duplicate pairs.

Page 3 of 8
Case No: 48482
Site Name: Outboard Marine Corp. (IL)

Page 3 of 8
SDG No: ETFA4
Laboratory: ALS

1. PRESERVATION AND HOLDING TIMES

No problems found.

2. GAS CHROMATOGRAPH/MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK

No problems found.

3. INITIAL CALIBRATION

No problems found.

4. INITIAL CALIBRATION VERIFICATION

No problems found.

5. CONTINUING CALIBRATION

No problems found.

6. BLANKS

The following samples were analyzed following a sample with analyte concentrations that exceed the instrument's calibration range with no interceding instrument blank. These results may be a product of or supplemented by cross contamination. The detects are qualified as estimated J. These results also exceeded the calibration range and were not reported in EXES because the final results in EXES are composites of the original analyses and their diluted analyses.

ETFA7, ETFB4 cis-1,2-Dichloroethene

ETFB1, ETFB3, ETFC5 Vinyl chloride, cis-1,2-Dichloroethene

The following samples have analyte results reported less than CRQLs. The associated method blanks results are less than CRQLs. Detects are qualified U. Sample results have been reported at the CRQLs.

ETFA4, ETFA5, ETFA7DL, ETFA8, ETFA9, ETFA9DL, ETFB0, ETFB0MS, ETFB0MSD, ETFB1, ETFB1DL, ETFB2, ETFB7, ETFB9, ETFC5DL, ETFC6, ETFC8, ETFC9, VHBLKW1

Acetone

Page 4 of 8
Case No: 48482
Site Name: Outboard Marine Corp. (IL)

Page 4 of 8
SDG No: ETFA4
Laboratory: ALS

ETFA7DL

1,4-Dichlorobenzene

The following sample has analyte results reported greater than CRQL but less than 2x CRQL. The associated method blank result is less than CRQL. Detect is qualified U. Sample result has been reported at 2x the CRQL.

ETFC5 Acetone

7. DEUTERATED MONITORING COMPOUNDS / SURROGATES

No problems found.

8. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample ETFB0 was designated by the samplers to be used for laboratory QC, i.e. MS/MSD analyses.

No problems found.

9. FLORISIL CARTRIDGE PERFORMANCE CHECK

Not required for this analysis.

10. CLEANUP PROCEDURES

Not required for this analysis.

11. LABORATORY CONTROL SAMPLE

Not required for this analysis.

12. INTERNAL STANDARD

No problems found.

13. TARGET ANALYTE IDENTIFICATION

The following samples have analyte results greater than the upper limit of calibration range. These samples were re-analyzed at dilution to bring the detections within the calibration ranges.

ETFA6, ETFA7, ETFB8 cis-1,2-Dichloroethene

Page 5 of 8
Case No: 48482
Site Name: Outboard Marine Corp. (IL)

Page 5 of 8
SDG No: ETFA4
Laboratory: ALS

ETFA9, ETFB1, ETFB3, ETFB4, ETFC5 Vinyl chloride, cis-1,2-Dichloroethene

14. REPORTED CONTRACT QUANTITATION LIMIT

The following samples have analyte results greater than or equal to method detection limits (MDLs) and below contract required quantitation limits (CRQLs). Detects are qualified as estimated J. Only the results for the analytes that exceeded the calibration ranges are reported from the diluted analyses in the EXES Sample Summary Report.

ETFA4

Vinyl chloride, Methyl acetate, 1,1-Dichloroethane, cis-1,2-Dichloroethene, 2-Butanone, Toluene

ETFA5, ETFA8

Vinyl chloride, 1,1-Dichloroethane, cis-1,2-Dichloroethene

ETFA6, ETFA7, ETFB8

1,1-Dichloroethene, trans-1,2-Dichloroethene

ETFA6DL, ETFA7DL, ETFB3, ETFB4, ETFB4DL

trans-1,2-Dichloroethene

ETFA9, ETFB1

1,1-Dichloroethene, trans-1,2-Dichloroethene, 2-Butanone

ETFB0, ETFB0MSD

Vinyl chloride, Chloroethane, 1,1-Dichloroethane, cis-1,2-Dichloroethene

ETFB0MS

Vinyl chloride, 1,1-Dichloroethane, cis-1,2-Dichloroethene

ETFB1DL

Trichloroethene

ETFB2, ETFB7

Chloroethane, trans-1,2-Dichloroethene, 1,1-Dichloroethane, Toluene

ETFB6

Chloroethane, Carbon disulfide, Methyl acetate, Methylene chloride, trans-1,2-Dichloroethene, 1,1-Dichloroethane, 4-Methyl-2-pentanone, Toluene, 2-Hexanone, m,p-Xylene

ETFB8DL

Vinyl chloride, trans-1,2-Dichloroethene

Page 6 of 8 Case No: 48482 SDG No: ETFA4 Laboratory: ALS

Site Name: Outboard Marine Corp. (IL)

ETFB9

cis-1,2-Dichloroethene

ETFC5

trans-1,2-Dichloroethene, 2-Butanone, Toluene

ETFC5DL

1,1-Dichloroethene, trans-1,2-Dichloroethene, Trichloroethene

ETFC6

Vinyl chloride

ETFC7

Chloroethane, 1,1-Dichloroethene, Carbon disulfide, 4-Methyl-2-pentanone, Toluene

ETFC8

Vinyl chloride, trans-1,2-Dichloroethene, 1,1-Dichloroethane, cis-1,2-Dichloroethene, Trichloroethene

ETFC9

Chloroethane, cis-1,2-Dichloroethene, Toluene

VBLKW1

Acetone, 1,4-Dichlorobenzene, 1,2-Dichlorobenzene, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene

VBLKW2

Acetone, Chlorobenzene, Ethylbenzene, m,p-Xylene, Styrene, Isopropylbenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1,2-Dichlorobenzene, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene

VHBLKW1

Chloroform

15. TENTATIVELY IDENTIFIED COMPOUNDS

Sample results are identified in the separate Data Validation Report titled 'Tentatively Identified Compounds'. The manually reviewed report is titled '48482 sdg ETFA4 TICs'.

16. SYSTEM PERFORMANCE

No problems found.

Page 7 of 8
Case No: 48482
Site Name: Outboard Marine Corp. (IL)
Solution Page 7 of 8
SDG No: ETFA4
Laboratory: ALS

17. FIELD QC SAMPLES

No sample was identified as field blanks or trip blanks. Samples ETFA6/ETFA7 and ETFB3/ETFB4 were identified as field duplicate pairs. The results and RPDs for the field duplicate samples are summarized in the following tables:

CLP Sample No.	ETFA6		ETFA7		
Sample Identifier:	OMC-MV	W-602D	OMC-M	W-602D-R	
Location:	MW-602	D	MW-602	D-R	
Collection Date/Time:	09/16/19	15:40	09/16/19	15:45	RPD
Units:	μg/L		μg/L		%
Dilution factor:	25		25		
Vinyl chloride	4300		4300		0
1,1-Dichloroethene	33	J	33	J	0
trans-1,2-Dichloroethene	53	J	50	J	5.8
cis-1,2-Dichloroethene	13000	E	13000	E	0
	ETFA6D	L	ETFA7D	L	
Dilution factor:	100		100		
Vinyl chloride	4200		4800		13
trans-1,2-Dichloroethene	48	J	57	J	17
cis-1,2-Dichloroethene	12000		13000		8.0

CLP Sample No.	ETFB3	ETFB4	
Sample Identifier:	OMC-MW-605D	OMC-MW-605D-R	
Location:	MW-605D	MW-605D-R	
Collection Date/Time:	09/17/19 15:30	09/17/19 15:35	RPD
Units:	μg/L	μg/L	%
Dilution factor:	25	25	
Vinyl chloride	6400 E	6400 E	0
trans-1,2-Dichloroethene	15 J	14 J	6.9
cis-1,2-Dichloroethene	14000 E	13000 E	7.4
	ETFB3DL	ETFB4DL	
Dilution factor:	100	100	
Vinyl chloride	6600	6100	7.9
trans-1,2-Dichloroethene	ND	15 J	200
cis-1,2-Dichloroethene	14000	13000	7.4

18. OVERALL ASSESSMENT

Manual integrations were performed for some samples. These manual integrations were reviewed by the reviewer and appear to be acceptable without additional qualifications.

Sample ETFB8DL (Not Reported) and QC sample VHBLKW1 reported an alkane as an individual TIC. The TIC was removed by the Reviewer.

Page 8 of 8
Case No: 48482
Site Name: Outboard Marine Corp. (IL)
Laboratory: ALS

Validation Data Qualifier Sheet

<u>Qualifiers</u>	Data Qualifier Definitions
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the results may be biased high.
J-	The result is an estimated quantity, but the results may be biased low.
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the sample.
UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
С	The target Pesticide or Aroclor analyte identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS).
X	The target Pesticide or Aroclor analyte identification was not confirmed when GC/MS analysis was performed.

=UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V SUPERFUND DIVISION

DATE:	
SUBJECT:	Review of Data Received for Review on: October15, 2019
FROM:	Timothy Prendiville, Supervisor (SR-6J) Science and Quality Assurance Section
TO:	Data User: <u>Jacobs</u> Email address: <u>kaitlin.ma@jacobs.com</u>
Electronic an	nd Manual Validation for Region 5
We have revie	ewed the data for the following case:
Site Name: O	Outboard Marine Corp. (IL)
Case No: <u>484</u>	82 MA No: <u>N/A</u> SDG No: <u>ETFB5</u>
Number and T	Type of Samples: 20 waters (low/medium level volatiles)
-	pers: <u>ETFA2, ETFA3, ETFB5, ETFC0 – ETFC4, ETFD0 – ETFD6, ETFD8,</u> E0, ETFE1, ETFE3
Laboratory: <u>/</u>	ALS Laboratory Group Hrs for Review:
Following are	our findings:

CC: Howard Pham

Region 5 ESAT Contracting Officer's Representative

Mail Code: SA-5J

Page 2 of 10
Case No: 48482
Site Name: Outboard Marine Corp. (IL)
SDG No: ETFB5
Laboratory: ALS

Below is a summary of the out-of-control audits and the possible effects on the data for this case:

Twenty (20) preserved water samples labeled; ETFA2, ETFA3, ETFB5, ETFC0 – ETFC4, ETFD0 – ETFD6, ETFD8, ETFD9, ETFE0, ETFE1 and ETFE3, were shipped to ALS Environmental located in Salt Lake City, UT. All samples were collected from September 16th - 18th, 2019. All samples were received intact and properly cooled on September 18th and 19th, 2019.

All samples were analyzed for the low/medium level volatile target analytes according to CLP SOW SOM02.4 (10/2016). The data package was reviewed according to the January 2017 NFG for SOM02.4 (EPA-540-R-2017-002) and the Region 5 ESAT Organic CLP Validation SOP.

Sample ETFB5 was designated by the samplers to be used for laboratory QC, i.e. MS/MSD analyses.

Sample ETFE0 was identified as equipment blank, Sample ETFE1 was identified as field blank. Sample ETFE3 was identified as trip blank. Samples ETFC1/ETFC2 and ETFD4/ ETFD5 were identified as field duplicate pairs.

Page 3 of 10
Case No: 48482
Site Name: Outboard Marine Corp. (IL)
SDG No: ETFB5
Laboratory: ALS

1. PRESERVATION AND HOLDING TIMES

No problems found.

2. GAS CHROMATOGRAPH/MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK

No problems found.

3. INITIAL CALIBRATION

No problems found.

4. INITIAL CALIBRATION VERIFICATION

No problems found.

5. CONTINUING CALIBRATION

No problems found.

6. BLANKS

The following samples were analyzed following a sample with analyte concentrations that exceed the instrument's calibration range with no interceding instrument blank. These results may be a product of or supplemented by cross contamination. The detects are qualified as estimated J.

ETFB5MS, ETFB5MSD cis-1,2-Dichloroethene

The following samples have analyte results reported less than CRQLs. The associated storage blanks results are less than CRQLs. Detects are qualified U. Sample results have been reported at the CRQLs.

ETFB5MS, ETFC0, ETFD6 Methylene chloride

The following samples have analyte results reported less than CRQLs. The associated trip blanks results are less than CRQLs. Detects are qualified U. Sample results have been reported at the CRQLs.

ETFE0, ETFE1 Acetone, Toluene

Page 4 of 10
Case No: 48482
Site Name: Outboard Marine Corp. (IL)
SDG No: ETFB5
Laboratory: ALS

The following samples have analyte results reported less than CRQLs. The associated field blanks results are less than CRQLs. Detects are qualified U. Sample results have been reported at the CRQLs.

ETFE0 o-Xylene, m,p-Xylene

The following samples have analyte results reported greater than CRQL but less than 2X the field blank result. The associated field blank result is greater than CRQL. Detects are qualified U. Sample results have been reported at 2X the blank results.

ETFA2, ETFD1, ETFD3, ETFE0 2-Butanone

7. DEUTERATED MONITORING COMPOUNDS / SURROGATES

No problems found.

8. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample ETFB5 was designated by the samplers to be used for laboratory QC, i.e. MS/MSD analyses.

No problems found.

9. FLORISIL CARTRIDGE PERFORMANCE CHECK

Not required for this analysis.

10. CLEANUP PROCEDURES

Not required for this analysis.

11. LABORATORY CONTROL SAMPLE

Not required for this analysis.

12. INTERNAL STANDARD

No problems found.

13. TARGET ANALYTE IDENTIFICATION

The following samples have analyte results greater than the upper limit of calibration range. These samples were re-analyzed at dilution to bring the detections within the calibration ranges.

Page 5 of 10
Case No: 48482
Site Name: Outboard Marine Corp. (IL)
SDG No: ETFB5
Laboratory: ALS

ETFB5

cis-1,2-Dichloroethene

ETFC3, ETFD9

cis-1,2-Dichloroethene, Trichloroethene

ETFD6

Vinyl chloride

The following samples have analyte results greater than the upper limit of calibration range. No further dilutions were performed because these samples were used for QC purpose only. The results are qualified as estimated J.

ETFB5MS, ETFB5MSD cis-1,2-Dichloroethene

14. REPORTED CONTRACT QUANTITATION LIMIT

The following samples have analyte results greater than or equal to method detection limits (MDLs) and below contract required quantitation limits (CRQLs). Detects are qualified as estimated J. Only the results for the analytes that exceeded the calibration ranges are reported from the diluted analyses in the EXES Sample Summary Report.

ETFA2

Acetone, Methyl acetate, cis-1,2-Dichloroethene, Toluene

ETFA3

Vinyl chloride, cis-1,2-Dichloroethene, Toluene

ETFB5

Chloroethane, 1,1-Dichloroethene, Acetone, trans-1,2-Dichloroethene, 1,1-Dichloroethane, 1,2-Dichloroethane, Toluene

ETFB5DL

Chloroethane, 1,1-Dichloroethene, Acetone, trans-1,2-Dichloroethene, 1,1-Dichloroethane, 1,2-Dichloroethane

ETFB5MS

Acetone, trans-1,2-Dichloroethene, 1,1-Dichloroethane, 1,2-Dichloroethane

ETFB5MSD

Chloroethane, Acetone, trans-1,2-Dichloroethene, 1,1-Dichloroethane, 1,2-Dichloroethane

Page 6 of 10
Case No: 48482
Site Name: Outboard Marine Corp. (IL)
SDG No: ETFB5
Laboratory: ALS

ETFC0

1,1-Dichloroethene, trans-1,2-Dichloroethene, Trichloroethene, 4-Methyl-2-Pentanone, Toluene, m,p-Xylene

ETFC1

Acetone, 1,1-Dichloroethane, cis-1,2-Dichloroethene, Chlorobenzene

ETFC2

Chloroethane, Acetone, 1,1-Dichloroethane, cis-1,2-Dichloroethene, Toluene, Chlorobenzene

ETFC3

trans-1,2-Dichloroethene

ETFC4

cis-1,2-Dichloroethene, Trichloroethene

ETFD0

Acetone, cis-1,2-Dichloroethene, Trichloroethene, Toluene

ETFD1

Vinyl chloride, trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, Toluene

ETFD2

Chloroethane, trans-1,2-Dichloroethene, 1,1-Dichloroethane, Trichloroethene

ETFD3

trans-1,2-Dichloroethene, 1,1-Dichloroethane, Trichloroethene, Toluene

ETFD4. ETFD5

Acetone, cis-1,2-Dichloroethene, Trichloroethene, Toluene

ETFD6

Acetone, cis-1,2-Dichloroethene

ETFD8

Vinyl chloride, Acetone, cis-1,2-Dichloroethene, Toluene

ETFD9

trans-1,2-Dichloroethene, 1,1-Dichloroethane

ETFD9DL

1,1-Dichloroethene, trans-1,2-Dichloroethene

Page 7 of 10
Case No: 48482
Site Name: Outboard Marine Corp. (IL)
SDG No: ETFB5
Laboratory: ALS

ETFE1

o-Xylene, m,p-Xylene

ETFE3

Acetone, Toluene

VBLKW1

Chlorobenzene, Styrene, 1,4-Dichlorobenzene, 1,2-Dichlorobenzene, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene

VBLKW2

1,4-Dichlorobenzene, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene

VHBLKW1

Methylene chloride

15. TENTATIVELY IDENTIFIED COMPOUNDS

Sample results are identified in the separate Data Validation Report titled 'Tentatively Identified Compounds'. The manually reviewed report is titled '48482 sdg ETFB5 TICs'.

16. SYSTEM PERFORMANCE

No problems found.

17. FIELD QC SAMPLES

Sample ETFE0 was identified as equipment blank, Sample ETFE1 was identified as field blank. Sample ETFE3 was identified as trip blank. The results for the QC blanks and their associated samples are summarized in the following table:

	QC ID	Trip blank	Field blank	Equipment blank
Analytes	CLP Sample ID	ETFE3	ETFE1	ETFE0
	Sample Identifier	OMC-TB091719	OMC-FB091719	OMC-EB091719
	Location	TB	FB	EB
	Collection Date	09/17/19 8:00	09/17/19 15:10	09/17/19 15:00
	Received Date	09/18/19 10:00	09/18/19 10:00	09/18/19 10:00
	DF, units	1.0, μg/L	1.0, μg/L	1.0, µg/L
Acetone		4.0 J	ND	ND
2-Butanor	ne	ND	11	ND
Toluene		0.25 J	ND	ND

Page 8 of 10
Case No: 48482
Site Name: Outboard Marine Corp. (IL)

Page 8 of 10
SDG No: ETFB5
Laboratory: ALS

	QC ID	Trip blank	Field blank	Equipment blank
Analytes	CLP Sample ID	ETFE3	ETFE1	ETFE0
	Sample Identifier	OMC-TB091719	OMC-FB091719	OMC-EB091719
	Location	TB	FB	EB
	Collection Date	09/17/19 8:00	09/17/19 15:10	09/17/19 15:00
	Received Date	09/18/19 10:00	09/18/19 10:00	09/18/19 10:00
	DF, units	1.0, μg/L	1.0, μg/L	1.0, µg/L
o-Xylene		ND	0.28 J	ND
m,p-Xyle	ne	ND	0.52 J	ND
Associated samples:		ETFB5, ETFD0 - ETFD2, ETFD8, ETFD9, ETFE0, ETFE1	ETFA2, ETFA3, ETFB5, ETFC0 – ETFC4, ETFD0 – ETFD6, ETFD8, ETFD9, ETFE0	ETFA2, ETFA3, ETFB5, ETFC0 - ETFC4, ETFD3 - ETFD6

Samples ETFC1/ETFC2 and ETFD4/ ETFD5 were identified as field duplicate pairs. The results and RPDs for the field duplicate samples are summarized in the following tables:

CLP Sample No.	ETFC1	ETFC2	
Sample Identifier:	OMC-MW-612S	OMC-MW-612S-R	
Location:	MW-612S	MW-612S-R	
Collection Date/Time:	09/18/19 11:05	09/18/19 11:10	RPD
Units:	μg/L	μg/L	%
Dilution factor:	1	1	
Chloroethane	ND	0.43 J	200
Acetone	3.4 J	6.1 J	57
1,1-Dichloroethane	0.36 J	0.32 J	12
cis-1,2-Dichloroethene	0.35 J	0.33 J	5.9
Toluene	ND	0.20 J	200
Chlorobenzene	0.19 J	0.20 J	5.1

Page 9 of 10
Case No: 48482
Site Name: Outboard Marine Corp. (IL)

Page 9 of 10
SDG No: ETFB5
Laboratory: ALS

CLP Sample No.	ETFD4		ETFD5		
Sample Identifier:	OMC-M	IW-621S	OMC-M	IW-621S-R	
Location:	MW-62	1S	MW-62	1S-R	
Collection Date/Time:	09/18/19	9 12:20	09/18/19	9 12:25	RPD
Units:	μg/L		μg/L		%
Dilution factor:	1		1		
Acetone	9.1	J	5.4	J	23
cis-1,2-Dichloroethene	0.29	J	0.29	J	0
Trichloroethene	0.45	J	0.32	J	34
Toluene	0.17	J	0.17	J	0

18. OVERALL ASSESSMENT

No manual integrations were performed for this SDG.

Reviewed by: Steffanie N Tobin / Techlaw-ESAT

Date: October 31, 2019

Page 10 of 10
Case No: 48482
SDG No: ETFB5
Site Name: Outboard Marine Corp. (IL)
Laboratory: ALS

Validation Data Qualifier Sheet

Qualifiers	Data Qualifier Definitions
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the results may be biased high.
J-	The result is an estimated quantity, but the results may be biased low.
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the sample.
UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
С	The target Pesticide or Aroclor analyte identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS).
X	The target Pesticide or Aroclor analyte identification was not confirmed when GC/MS analysis was performed.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION V SUPERFUND DIVISION

DATE:					
SUBJECT:	Review of Data Received for Review	on: October 7	, 2019		
FROM:	Timothy Prendiville, Science and Quality	-			
TO:	Data User: Email Address:	<u>Jacobs</u> <u>Kaitlin.Ma@j</u>	acobs.com		
Electronic an	d Manual Validation	for Region 5			
We have revie	ewed the data for the fo	ollowing case:			
SITE Name:	Outboard Marin	ne Corporation	(IL)		
Case No: <u>484</u>	.82 MA N	o:		SDG No:	ETFD7
Number and T	Type of Samples: 2 wa	nters (Low/Med	lium Volatiles)		
Sample Numb	ers: <u>ETFD7, ETFI</u>	<u>E2</u>			
Laboratory:	ALS Environmental	(SLC)	Hrs. for Revie	ew:	
Following are	our findings:				

CC: Howard Pham

Region 5 ESAT Contracting Officer's Representative Mail Code: SA-5J

Page 2 of 6
Case No: 48482
SDG No: ETFD7
Site Name: Outboard Marine Corporation (IL)
Laboratory: ALS

Below is a summary of the out-of-control audits and the possible effects on the data for this case:

Two (2) preserved water samples; ETFD7 and ETFE2, were shipped to ALS Laboratory Group (SLC) located in Salt Lake City, UT. The samples were collected on September 18, 2019 and received intact and properly cooled on September 19, 2019.

All samples were analyzed according to CLP SOW SOM02.4 (10/2016) for the low/medium level volatile target analytes. The data package was reviewed according to the January 2017 NFG for SOM02.4 (EPA-540-R-2017-002) and the Region 5 ESAT Organic CLP Validation SOP.

Sample ETFD7 was utilized for laboratory QC, i.e. MS/MSD analyses.

Sample ETFE2 was identified as a trip blank.

Reviewed by: Allison C Harvey / Techlaw-ESAT Date: October 21, 2019

Page 3 of 6
Case No: 48482
Site Name: Outboard Marine Corporation (IL)
Page 3 of 6
SDG No: ETFD7
Laboratory: ALS

1. PRESERVATION AND HOLDING TIMES

No problems found.

2. GAS CHROMATOGRAPH/MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK

No problems found.

3. INITIAL CALIBRATION

No problems found.

4. INITIAL CALIBRATION VERIFICATION

No problems found.

5. CONTINUING CALIBRATION

No problems found.

6. BLANKS

No problems found.

7. DEUTERATED MONITORING COMPOUNDS / SURROGATES

No problems found.

8. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample ETFD7 was utilized for laboratory QC, i.e. MS/MSD analyses.

No problems found.

9. FLORISIL CARTRIDGE PERFORMANCE CHECK

Not required for this analysis.

10. CLEANUP PROCEDURES

Not required for this analysis.

Reviewed by: Allison C Harvey / Techlaw-ESAT

Date: October 21, 2019

Page 4 of 6
Case No: 48482
SDG No: ETFD7
Site Name: Outboard Marine Corporation (IL)
Laboratory: ALS

11. LABORATORY CONTROL SAMPLE

Not required for this analysis.

12. INTERNAL STANDARD

No problems found.

13. TARGET ANALYTE IDENTIFICATION

No problems found.

14. REPORTED CONTRACT QUANTITATION LIMIT

The following volatile samples have analyte results greater than or equal to method detection limit (MDL) and below contract required quantitation limit (CRQL). Detects are qualified as estimated J.

ETFD7

1,1-Dichloroethane, cis-1,2-Dichloroethene, Trichloroethene

ETFD7MS, ETFD7MSD

1,1-Dichloroethane, cis-1,2-Dichloroethene

ETFE2

Toluene

VBLKW2

1,4-Dichlorobenzene, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene

15. TENTATIVELY IDENTIFIED COMPOUNDS

No TICs reported for this SDG.

16. SYSTEM PERFORMANCE

No problems found.

17. FIELD QC SAMPLES

Sample ETFE2 was identified as a trip blank. Sample ETFE2 reported Toluene with a concentration of $0.38 \, \mu g/L$.

Reviewed by: Allison C Harvey / Techlaw-ESAT Date: October 21, 2019

Page 5 of 6
Case No: 48482
Site Name: Outboard Marine Corporation (IL)
Page 5 of 6
SDG No: ETFD7
Laboratory: ALS

18. OVERALL ASSESSMENT

No manual integrations were performed for this SDG.

Reviewed by: Allison C Harvey / Techlaw-ESAT

Date: October 21, 2019

Page 6 of 6
Case No: 48482
SDG No: ETFD7
Site Name: Outboard Marine Corporation (IL)
Laboratory: ALS

Validation Data Qualifier Sheet

Qualifiers	Data Qualifier Definitions
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the results may be biased high.
J-	The result is an estimated quantity, but the results may be biased low.
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the sample.
UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.
С	The target Pesticide or Aroclor analyte identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS).
X	The target Pesticide or Aroclor analyte identification was not confirmed when GC/MS analysis was performed.